Physiologically informed dynamic causal modeling of fMRI data

[1]  M. Raichle,et al.  The Effects of Changes in PaCO2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time , 1974, Stroke.

[2]  K. Morris,et al.  Respiratory and Mayer wave-related discharge patterns of raphé and pontine neurons change with vagotomy. , 2010, Journal of applied physiology.

[3]  Stephen D. Mayhew,et al.  Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity , 2013, Proceedings of the National Academy of Sciences.

[4]  I. Kanno,et al.  Anesthesia and the Quantitative Evaluation of Neurovascular Coupling , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  A. Kleinschmidt,et al.  Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man , 1996, Magnetic resonance in medicine.

[6]  N. Logothetis,et al.  Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. , 2008, Magnetic resonance imaging.

[7]  Karl J. Friston,et al.  Generalised filtering and stochastic DCM for fMRI , 2011, NeuroImage.

[8]  G. Crelier,et al.  Stimulus-Dependent BOLD and Perfusion Dynamics in Human V1 , 1999, NeuroImage.

[9]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[10]  Vince D. Calhoun,et al.  Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering , 2011, NeuroImage.

[11]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[12]  Seong-Gi Kim,et al.  Evolution of the Dynamic Changes in Functional Cerebral Oxidative Metabolism from Tissue Mitochondria to Blood Oxygen , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[14]  Seong-Gi Kim,et al.  Temporal Dynamics and Spatial Specificity of Arterial and Venous Blood Volume Changes during Visual Stimulation: Implication for Bold Quantification , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[16]  A. Grinvald,et al.  Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry , 2005, The Journal of Neuroscience.

[17]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[18]  Egill Rostrup,et al.  The relationship between cerebral blood flow and volume in humans , 2005, NeuroImage.

[19]  G. Bruce Pike,et al.  MRI measurement of the BOLD-specific flow–volume relationship during hypercapnia and hypocapnia in humans , 2010, NeuroImage.

[20]  F. Stuart Foster,et al.  Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound , 2012, NeuroImage.

[21]  M. Dichter,et al.  Cellular mechanisms of epilepsy: a status report. , 1987, Science.

[22]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[23]  Fuqiang Zhao,et al.  Increases in Oxygen Consumption without Cerebral Blood Volume Change during Visual Stimulation under Hypotension Condition , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[25]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Gregory G. Brown,et al.  BOLD and Perfusion Response to Finger-Thumb Apposition after Acetazolamide Administration: Differential Relationship to Global Perfusion , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  A. Kleinschmidt,et al.  Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex , 1996, Magnetic resonance in medicine.

[28]  N. Logothetis,et al.  Relationship of the BOLD Signal with VEP for Ultrashort Duration Visual Stimuli (0.1 to 5 ms) in Humans , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  N. Logothetis,et al.  The Influence of Moderate Hypercapnia on Neural Activity in the Anesthetized Nonhuman Primate , 2008, Cerebral cortex.

[30]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[32]  Richard B. Buxton,et al.  Dynamic models of BOLD contrast , 2012, NeuroImage.

[33]  B. Cauli,et al.  Revisiting the Role of Neurons in Neurovascular Coupling , 2010, Front. Neuroenerg..

[34]  Karl J. Friston,et al.  Dynamic causal modelling for fMRI: A two-state model , 2008, NeuroImage.

[35]  G. Bruce Pike,et al.  Origins of the BOLD post-stimulus undershoot , 2009, NeuroImage.

[36]  D. Attwell,et al.  Glial and neuronal control of brain blood flow , 2022 .

[37]  F. Hyder,et al.  Neurovascular and Neurometabolic Couplings in Dynamic Calibrated fMRI: Transient Oxidative Neuroenergetics for Block-Design and Event-Related Paradigms , 2010, Front. Neuroenerg..

[38]  J. Pekar,et al.  Hemodynamic Changes after Visual Stimulation and Breath Holding Provide Evidence for an Uncoupling of Cerebral Blood Flow and Volume from Oxygen Metabolism , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[40]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[42]  R. Buxton,et al.  Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity , 2014, Front. Neurosci..

[43]  G. Glover,et al.  Changes in baseline cerebral blood flow in humans do not influence regional cerebral blood flow response to photic stimulation , 2000, Journal of magnetic resonance imaging : JMRI.

[44]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[45]  Stephen D. Mayhew,et al.  Investigating intrinsic connectivity networks using simultaneous BOLD and CBF measurements , 2014, NeuroImage.

[46]  Stephen D. Mayhew,et al.  Evidence that the negative BOLD response is neuronal in origin: A simultaneous EEG–BOLD–CBF study in humans , 2014, NeuroImage.

[47]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.

[48]  Grant R. Gordon,et al.  Brain metabolism dictates the polarity of astrocyte control over arterioles , 2008, Nature.

[49]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[50]  Hanzhang Lu,et al.  The BOLD post-stimulus undershoot, one of the most debated issues in fMRI , 2012, NeuroImage.

[51]  Ping Wang,et al.  Trial-by-trial relationship between neural activity, oxygen consumption, and blood flow responses , 2008, NeuroImage.

[52]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Cauli,et al.  Pyramidal Neurons Are “Neurogenic Hubs” in the Neurovascular Coupling Response to Whisker Stimulation , 2011, The Journal of Neuroscience.

[54]  Thomas T. Liu,et al.  Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients , 2004, NeuroImage.

[55]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[56]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[57]  U. Lindauer,et al.  Neurovascular Coupling in Rat Brain Operates Independent of Hemoglobin Deoxygenation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[59]  K. Uğurbil,et al.  Neural activity-induced modulation of BOLD poststimulus undershoot independent of the positive signal. , 2009, Magnetic resonance imaging.

[60]  J. Riera,et al.  Brain oscillations: ideal scenery to understand the neurovascular coupling. , 2010, Current opinion in neurology.

[61]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[62]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[63]  Tony O’Hagan Bayes factors , 2006 .

[64]  Jie Lu,et al.  Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat , 2009, NeuroImage.

[65]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[66]  Antígona Martínez,et al.  Nonlinear temporal dynamics of the cerebral blood flow response , 2001, Human brain mapping.

[67]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[68]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[69]  Adeel Razi,et al.  A DCM for resting state fMRI , 2014, NeuroImage.

[70]  G. Glover,et al.  Simultaneous monitoring of dynamic changes in cerebral blood flow and oxygenation during sustained activation of the human visual cortex. , 1999, Neuroreport.

[71]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[72]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[73]  Karl J. Friston,et al.  DEM: A variational treatment of dynamic systems , 2008, NeuroImage.

[74]  A. Huk,et al.  A Model for Transient Oxygen Delivery in Cerebral Cortex , 2009, Front. Neuroenerg..

[75]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[76]  M. Lauritzen Reading vascular changes in brain imaging: is dendritic calcium the key? , 2005, Nature Reviews Neuroscience.

[77]  J. Pekar,et al.  Sustained Poststimulus Elevation in Cerebral Oxygen Utilization after Vascular Recovery , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[78]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[79]  Nelson J. Trujillo-Barreto,et al.  Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal , 2007, NeuroImage.

[80]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[81]  G. Boynton,et al.  Adaptation: from single cells to BOLD signals , 2006, Trends in Neurosciences.

[82]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[83]  Thomas T. Liu,et al.  Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI , 2004, NeuroImage.

[84]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[85]  A. Toga,et al.  Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses , 2004, Neuron.

[86]  W. Powers,et al.  Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation. , 1996, The American journal of physiology.

[87]  Rainer Goebel,et al.  The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution , 2011, NeuroImage.

[88]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[89]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .