Stochastic-dynamic modelling of farm-level investments under uncertainty

Abstract In the light of uncertainties, high initial costs, and temporal managerial flexibility, the real options approach has gained interest as a valuation tool for different types of natural resources management problems. Yet, neither real options valuation method excels under consideration of variability of resource endowments, returns-to-scale and predefined sizes of options. We fill the methodological gap by developing a method based on Monte Carlo simulation, scenario tree reduction, and stochastic programming that is advantageous for valuing real options where timing, scale and interactions among constraints and alternatives matter. The method advances in straightforward conversion of deterministic programming applications based on the classical net present value approach into a real options framework, and in introducing complexity into existing real options models. We illustrate the method with a case study featuring investment options regarding the adoption, coppicing, and conversion of perennial biomass energy production systems.

[1]  Riccardo Scarpa,et al.  Forest Valuation under the New Zealand Emissions Trading Scheme: A Real Options Binomial Tree with Stochastic Carbon and Timber Prices , 2014, Land Economics.

[2]  G. Keoleian,et al.  Life cycle assessment of a willow bioenergy cropping system , 2003 .

[3]  Claudia A. Sagastizábal,et al.  Constrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems , 2014, SIAM J. Optim..

[4]  Laureano F. Escudero,et al.  Medium range optimization of copper extraction planning under uncertainty in future copper prices , 2014, Eur. J. Oper. Res..

[5]  S. A. Abdel Sabour,et al.  Valuing Real Capital Investments Using The Least-Squares Monte Carlo Method , 2006 .

[6]  I. Lewandowski Securing a sustainable biomass supply in a growing bioeconomy , 2015 .

[7]  Laura Uusitalo,et al.  An overview of methods to evaluate uncertainty of deterministic models in decision support , 2015, Environ. Model. Softw..

[8]  Leonardo Lima Gomes,et al.  Switching outputs in a bioenergy cogeneration project: A real options approach , 2014 .

[9]  Davide Viaggi,et al.  Modelling and interpreting the impact of policy and price scenarios on farm-household sustainability: Farming systems vs. result-driven clustering , 2013, Environ. Model. Softw..

[10]  G. Metcalf,et al.  Investment Under Alternative Return Assumptions: Comparing Random Walks and Mean Reversion , 1995 .

[11]  Diane M. Lander,et al.  Challenges to the practical implementation of modeling and valuing real options , 1998 .

[12]  Werner Römisch,et al.  Scenario tree reduction for multistage stochastic programs , 2009, Comput. Manag. Sci..

[13]  L. Trigeorgis Real Options: Managerial Flexibility and Strategy in Resource Allocation , 1996 .

[14]  Joao P. S. Catalao,et al.  An advanced model for the efficient and reliable short-term operation of insular electricity networks with high renewable energy sources penetration , 2014 .

[15]  Thomas Knoke,et al.  Analysis of commercial short rotation coppices in Bavaria, southern Germany , 2014 .

[16]  Sarah M. Ryan,et al.  Scenario construction and reduction applied to stochastic power generation expansion planning , 2013, Comput. Oper. Res..

[17]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[18]  Lars Stentoft,et al.  Refining the Least Squares Monte Carlo Method by Imposing Structure , 2013 .

[19]  Luis M. Abadie,et al.  Monte Carlo valuation of natural gas investments , 2006 .

[20]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[21]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[22]  Patrizia Beraldi,et al.  A multistage stochastic programming approach for capital budgeting problems under uncertainty , 2013 .

[23]  Utkur Djanibekov,et al.  Policy analysis of perennial energy crop cultivation at the farm level: Short rotation coppice (SRC) in Germany , 2018 .

[24]  Richard Moles,et al.  An insight into the system dynamics method: a case study in the dynamics of international minerals investment , 2001, Environ. Model. Softw..

[25]  Xiaoyu Ji,et al.  Portfolio selection model of oil projects under uncertain environment , 2018, Soft Comput..

[26]  David C. Lothner,et al.  Examining short-rotation hybrid poplar investments by using stochastic simulation , 1986 .

[27]  Zili Zhu,et al.  Real options analysis for land use management: Methods, application, and implications for policy. , 2015, Journal of environmental management.

[28]  L. Rogers Monte Carlo valuation of American options , 2002 .

[29]  Matthew T. Holt,et al.  Combining time‐varying and dynamic multi‐period optimal hedging models , 2002 .

[30]  Carlos Parra-López,et al.  Strengthening the development of the short-rotation plantations bioenergy sector : Policy insights from six European countries , 2017 .

[31]  Feng Song,et al.  Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility , 2011 .

[32]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[33]  Markus Gandorfer,et al.  Modeling Economic Performance of an Agroforestry System under Yield and Price Risk. , 2011 .

[34]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[35]  Jeffrey J. Reuer,et al.  Real options theory in strategic management , 2017 .

[36]  Oliver Musshoff,et al.  Are short rotation coppices an economically interesting form of land use? A real options analysis , 2014 .

[37]  Karl Frauendorfer,et al.  Refinement Issues in Stochastic Multistage Linear Programming , 1998 .

[38]  Georg von Wühlisch,et al.  Pappeln und Weiden in Deutschland: Bericht der nationalen Pappelkommission 2012-2015 , 2016 .

[39]  Oliver Musshoff,et al.  Growing short rotation coppice on agricultural land in Germany: a Real Options Approach. , 2012 .

[40]  Sven F. Crone,et al.  Forecasting and operational research: a review , 2008, J. Oper. Res. Soc..

[41]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[42]  T. Hoffmann,et al.  Harvest technology for short rotation coppices and costs of harvest, transport and storage , 2015 .

[43]  James E. Smith,et al.  Alternative Approaches for Solving Real-Options Problems: (Comment on Brandão et al. 2005) , 2005, Decis. Anal..

[44]  Lei Zhu,et al.  A real options–based CCS investment evaluation model: Case study of China’s power generation sector , 2011 .

[45]  F. Cubbage,et al.  A real options model to assess the role of flexibility in forestry and agroforestry adoption and disadoption in the Lower Mississippi Alluvial Valley , 2013 .

[46]  Giorgio Consigli,et al.  Dynamic stochastic programmingfor asset-liability management , 1998, Ann. Oper. Res..

[47]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[48]  Lenos Trigeorgis,et al.  Real Options in Operations Research: A Review , 2017, Eur. J. Oper. Res..

[49]  Salvatore Di Falco,et al.  Crop genetic diversity, productivity and stability of agroecosystems : a theoretical and empirical investigation , 2003 .

[50]  Michael A. H. Dempster,et al.  Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .

[51]  M. Dempster Sequential Importance Sampling Algorithms for Dynamic Stochastic Programming , 2006 .

[52]  Martin Holley,et al.  Short rotation plantations policy history in Europe: lessons from the past and recommendations for the future , 2016, Food and energy security.

[53]  B. Bouchard,et al.  Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .

[54]  Gero Becker,et al.  New Holland Forage Harvester’s Productivity in Short Rotation Coppice: Evaluation of Field Studies from a German Perspective , 2012 .

[55]  Gudbrand Lien,et al.  Stochastic utility-efficient programming of organic dairy farms , 2007, Eur. J. Oper. Res..

[56]  Robert Finger,et al.  Animal Health and Other Determinants Of Downside Risk Exposure Of Dairy Farms , 2018 .

[57]  Genevieve Patenaude,et al.  The economics of short rotation coppice in Germany , 2012 .

[58]  P. Boyle Options: A Monte Carlo approach , 1977 .

[59]  Grace B. Villamor,et al.  Market-based instruments for risk-averse farmers: rubber agroforest conservation in Jambi Province, Indonesia , 2016, Environment and Development Economics.

[60]  Michael A. H. Dempster,et al.  Dynamic Stochastic Programming for Asset-Liability Management , 1998 .

[61]  Claudia A. Sagastizábal,et al.  Divide to conquer: decomposition methods for energy optimization , 2012, Mathematical Programming.

[62]  R. Finger,et al.  Assessment of uncertain returns from investment in short rotation coppice using risk adjusted discount rates , 2016 .

[63]  T. W. Bowersox,et al.  Economic evaluations of multiple rotation sric biomass plantations , 1988 .

[64]  Hans-Joachim Budde,et al.  A computerised planning method for risky investments , 1980 .

[65]  W. N. Street,et al.  Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/ Liability Management: a Synthesis , 1996 .

[66]  Robert Finger,et al.  A real-option farm-level model on investment in perennial energy crops under risk considerations , 2017 .

[67]  Charles R. Warren,et al.  Limited adoption of short rotation coppice: The role of farmers' socio-cultural identity in influencing practice , 2016 .

[68]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[69]  James S. Dyer,et al.  Decision Analysis and Real Options: A Discrete Time Approach to Real Option Valuation , 2005, Ann. Oper. Res..

[70]  Göran Berndes,et al.  Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies , 2011 .

[71]  G. Keoleian,et al.  Renewable Energy from Willow Biomass Crops: Life Cycle Energy, Environmental and Economic Performance , 2005 .

[72]  Lars Stentoft Assessing the Least Squares Monte-Carlo Approach to American Option Valuation , 2004 .

[73]  Kevin Lindegaard,et al.  A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990 , 2016 .

[74]  Markku Kuula,et al.  Real options valuation of forest plantation investments in Brazil , 2012, Eur. J. Oper. Res..

[75]  V. R. Tolbert,et al.  Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production. , 2002, Environmental pollution.

[76]  Luca Di Corato,et al.  Investing in energy forestry under uncertainty , 2013 .

[77]  Wael Ali,et al.  Modelling of Biomass Production Potential of Poplar in Short Rotation Plantations on Agricultural Lands of Saxony, Germany , 2008 .

[78]  Andrew J. Higgins,et al.  The multiple criteria analysis tool (MCAT): A new software tool to support environmental investment decision making , 2009, Environ. Model. Softw..

[79]  Fabio Bartolini,et al.  An analysis of policy scenario effects on the adoption of energy production on the farm: a case study in Emilia-Romagna (Italy). , 2012 .

[80]  Mikael Rönnqvist,et al.  Integrated harvest and logistic planning including road upgrading , 2014 .

[81]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[82]  E SmithJames Alternative Approaches for Solving Real-Options Problems , 2005 .

[83]  Gero Becker,et al.  Economics of poplar short rotation coppice plantations on marginal land in Germany. , 2013 .

[84]  Martin van Eldik,et al.  Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles , 2018, Energy.

[85]  Graeme Guthrie,et al.  Real Options in Theory and Practice , 2009 .

[86]  María Merino,et al.  An algorithmic framework for solving large-scale multistage stochastic mixed 0-1 problems with nonsymmetric scenario trees , 2012, Comput. Oper. Res..

[87]  Takuya Iwanaga,et al.  Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques , 2020, Environ. Model. Softw..