Initial high beta operation of the HBT-EP Tokamak

HBT-EP is a new research tokamak designed and built to investigate passive and active feedback techniques to control MHD instabilities. In particular, HBT-EP will be able to test techniques to control fast MHD instabilities occurring at high Troyon-normalized beta, βN ≡ βBa/Ip [Tm/MA], since it is equipped with a thick, close-fitting, and adjustable conducting shell. The major goals of the initial operation of HBT-EP have been the achievement of high beta operation (βN ∼ 3) using only ohmic heating and the observation of MHD instabilities. By using a unique fast startup technique, we have successfully achieved these goals. A variety of MHD phenomena were observed during the high beta operation of HBT-EP. At modest beta (βN ≤ 2), discharges have been maintained for more than 10 msec, and these discharges exhibit saturated resistive instabilities. When βN approaches 3, major disruptions occur preceded by oscillating, growing precursors. During start-up, one or more minor disruptions are usually observed. A 1-D transport code has been used to simulate the evolution of the current profile, and these early minor instabilities are predicted to be double tearing modes. The simulation also reproduces the observed high beta operation when saturated neo-Alcator energy confinement scaling is assumed.