A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical recognition of tadalafil.

[1]  H Zhao,et al.  Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. , 2016, Biosensors & bioelectronics.

[2]  H Zhao,et al.  p-sulfonated calix[8]arene functionalized graphene as a "turn on" fluorescent sensing platform for aconitine determination. , 2016, Biosensors & bioelectronics.

[3]  Hui Zhao,et al.  Highly sensitive electrochemical sensor based on β-cyclodextrin-gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. , 2015, Analytica chimica acta.

[4]  H Zhao,et al.  Simultaneous determination of two flavonoids based on disulfide linked β-cyclodextrin dimer and Pd cluster functionalized graphene-modified electrode , 2015 .

[5]  H Zhao,et al.  Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. , 2015, Biosensors & bioelectronics.

[6]  H Zhao,et al.  Dual β-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. , 2015, Biosensors & bioelectronics.

[7]  Haijun Zhang,et al.  Theoretical study of complexation of resveratrol with cyclodextrins and cucurbiturils: structure and antioxidative activity , 2015 .

[8]  S. Ozkan,et al.  Electrochemical behavior of tadalafil on TiO2 nanoparticles–MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry , 2014, Journal of Solid State Electrochemistry.

[9]  M. Vendruscolo,et al.  Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. , 2013, Journal of the American Chemical Society.

[10]  Min Zhang,et al.  One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. , 2013, Nanoscale.

[11]  Wei Liu,et al.  A new dual-signalling electrochemical sensing strategy based on competitive host-guest interaction of a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode: sensitive electrochemical determination of organic pollutants. , 2013, Chemistry.

[12]  S. A. John,et al.  Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. , 2013, Analytica chimica acta.

[13]  G. Diao,et al.  Calix[4,6,8]arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host-guest electrochemical recognition. , 2013, ACS applied materials & interfaces.

[14]  Jinhua Chen,et al.  β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. , 2012, Nanoscale.

[15]  Zhengyu Jin,et al.  Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. , 2012, Carbohydrate polymers.

[16]  Demei Tian,et al.  p-Sulfonated calix[6]arene modified graphene as a 'turn on' fluorescent probe for L-carnitine in living cells. , 2012, Chemical communications.

[17]  Uwe Pischel,et al.  Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. , 2011, Chemical reviews.

[18]  Lun Wang,et al.  Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. , 2011, Chemical communications.

[19]  Jong Seung Kim,et al.  Recognition of amino acids by functionalized calixarenes. , 2011, Chemical Society reviews.

[20]  Adam R. Urbach,et al.  Molecular recognition of insulin by a synthetic receptor. , 2011, Journal of the American Chemical Society.

[21]  Luc Brunsveld,et al.  Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.

[22]  E. Wang,et al.  Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. , 2010, ACS nano.

[23]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[24]  Giannitsas Konstantinos,et al.  Phosphodiesterase-5 inhibitors: future perspectives. , 2009, Current pharmaceutical design.

[25]  Klaus Müllen,et al.  Composites of Graphene with Large Aromatic Molecules , 2009 .

[26]  A. Patil,et al.  Aqueous Stabilization and Self‐Assembly of Graphene Sheets into Layered Bio‐Nanocomposites using DNA , 2009 .

[27]  Rong Huang,et al.  Molecular selective binding of aliphatic oligopeptides by bridged bis(β-cyclodextrin)s with aromatic diamine linkers , 2009 .

[28]  Dongqing Wu,et al.  Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions , 2009 .

[29]  S. M. Badr-Eldin,et al.  Inclusion complexes of tadalafil with natural and chemically modified beta-cyclodextrins. I: preparation and in-vitro evaluation. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  Chao Zhang,et al.  One‐Step Ionic‐Liquid‐Assisted Electrochemical Synthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly from Graphite , 2008 .

[31]  M. Rodríguez-Pérez,et al.  Functionalized graphene sheet filled silicone foam nanocomposites , 2008 .

[32]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[33]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[34]  F. Perret,et al.  Biochemistry of the para-sulfonato-calix[n]arenes. , 2006, Chemical communications.

[35]  Sandip Niyogi,et al.  Solution properties of graphite and graphene. , 2006, Journal of the American Chemical Society.

[36]  H. Porst Phosphodiesterase Type-5 Inhibitors: A Critical Comparative Analysis , 2004 .

[37]  K. Aidas,et al.  Reports of Meetings , 1971 .