RTM using effective boundary saving: A staggered grid GPU implementation

Abstract GPU has become a booming technology in reverse time migration (RTM) to perform the intensive computation. Compared with saving forward modeled wavefield on the disk, RTM via wavefield reconstruction using saved boundaries on device is a more efficient method because computation is much faster than CPU–GPU data transfer. In this paper, we introduce the effective boundary saving strategy in backward reconstruction for RTM. The minimum storage requirement for regular and staggered grid finite difference is determined for perfect reconstruction of the source wavefield. Particularly, we implement RTM using GPU programming, combining staggered finite difference scheme with convolutional perfectly matched layer (CPML) boundary condition. We demonstrate the validity of the proposed approach and CUDA codes with numerical example and imaging of benchmark models.

[1]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[2]  Antoine Guitton,et al.  Least-squares attenuation of reverse-time-migration artifacts , 2007 .

[3]  H. Wang,et al.  The Application of GPU-based TTI RTM in a Complex Area with Shallow Gas and Fault Shadow - A Case History , 2013 .

[4]  Henri Calandra,et al.  Fast seismic modeling and Reverse Time Migration on a GPU cluster , 2009, 2009 International Conference on High Performance Computing & Simulation.

[5]  Paulius Micikevicius,et al.  3D finite difference computation on GPUs using CUDA , 2009, GPGPU-2.

[6]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[7]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[8]  Antoine Guitton,et al.  Least-square Attenuation of Reverse Time Migration Artifacts , 2006 .

[9]  Hong Liu,et al.  GPU Based PSPI One-Way Wave High Resolution Migration , 2012 .

[10]  Changsoo Shin,et al.  3D reverse-time migration using the acoustic wave equation: An experience with the SEG/EAGE data set , 2003 .

[11]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[12]  Wei Liu,et al.  Anisotropic Reverse-Time Migration Using Co-Processors , 2009 .

[13]  Hongwei Liu,et al.  Wavefield reconstruction methods for reverse time migration , 2013 .

[14]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[15]  Peyman P. Moghaddam,et al.  Industrial-Scale Reverse Time Migration On GPU Hardware , 2009 .

[16]  Gordon Erlebacher,et al.  High-order finite-element seismic wave propagation modeling on a cluster of 192 GPUs , 2010, ISC 2010.

[17]  H. Q. Wang,et al.  Application of GPUs in Seismic Depth Migration , 2012 .

[18]  Bin Wang,et al.  Expanding domain methods in GPU based TTI reverse time migration , 2011 .

[19]  Haohuan Fu,et al.  Eliminating the memory bottleneck: an FPGA-based solution for 3d reverse time migration , 2011, FPGA '11.

[20]  Markus Hadwiger,et al.  Multisource Reverse-time Migration and Full-waveform Inversion on a GPGPU , 2010 .

[21]  Bin Wang,et al.  Cluster programming for reverse time migration , 2010 .

[22]  Yaning Liu,et al.  3D seismic reverse time migration on GPGPU , 2013, Comput. Geosci..

[23]  Eduard Ayguadé,et al.  Implementation of a Reverse Time Migration kernel using the HCE High Level Synthesis tool , 2011, 2011 International Conference on Field-Programmable Technology.

[24]  Robin M. Weiss,et al.  Solving 3D anisotropic elastic wave equations on parallel GPU devices , 2013 .

[25]  Haohuan Fu,et al.  Selecting the right hardware for reverse time migration , 2010 .

[26]  Bin Wang,et al.  Iterative Velocity Model Building Using GPU Based Layer-Stripping TTI RTM , 2012 .

[27]  William W. Symes,et al.  Computational Strategies For Reverse-time Migration , 2008 .

[28]  R. Clapp,et al.  Least Squares Reverse Time Migration on GPUs - Balancing IO and Computation , 2012 .

[29]  Gordon Erlebacher,et al.  Running 3D Finite-difference or Spectral-element Wave Propagation Codes 25x to 50x Faster Using a GPU Cluster , 2010 .

[30]  Paul Sava,et al.  Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments , 2013 .

[31]  Dimitri Komatitsch,et al.  Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards , 2010 .

[32]  Bo Li,et al.  The issues of prestack reverse time migration and solutions with Graphic Processing Unit implementation , 2012 .

[33]  G. McMechan MIGRATION BY EXTRAPOLATION OF TIME‐DEPENDENT BOUNDARY VALUES* , 1983 .

[34]  M.E. Lima,et al.  FPGA-based Accelerator to Speed-up Seismic Applications , 2011, 2011 Simpasio em Sistemas Computacionais.

[35]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[36]  Changsoo Shin,et al.  Acceleration of stable TTI P-wave reverse-time migration with GPUs , 2013, Comput. Geosci..

[37]  R. Clapp Reverse time migration with random boundaries , 2009 .

[38]  E. Baysal,et al.  Reverse time migration , 1983 .

[39]  Shi Ying,et al.  Denoise Investigation on Prestack Reverse time Migration Based on GPU/CPU Collaborative Parallel Accelerating Computation , 2013, 2013 International Conference on Computational and Information Sciences.

[40]  Hong Liu,et al.  A Fourier integral algorithm and its GPU/CPU collaborative implementation for one-way wave equation migration , 2012, Comput. Geosci..