1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding.

Regioselective Pd0 -catalyzed cross-coupling of bispropargylic precursors 1 with silyl-protected alkynes gave rise to the first 1,3-diethynylallenes 2 [Eq. (1), LG=leaving group]. In enantiomerically pure form, these novel carbon-rich modules could provide access-by oxidative oligomerization-to a fascinating new class of helical oligomers and polymers.

[1]  Tamar Schlick,et al.  Geometry Optimization: 2 , 2002 .

[2]  F. Diederich,et al.  Poly(triacetylene) Oligomers: Conformational Analysis by X‐Ray Crystallography and Synthesis of a 17.8‐nm‐Long Monodisperse 24‐mer , 2001 .

[3]  F. Diederich Carbon-rich acetylenic scaffolding: rods, rings and switches , 2001 .

[4]  M. Christl,et al.  Die Dimerisierung chiraler Allene: Enantiomeren‐ und Homomerenpaare liefern unterschiedliche Diastereomere , 2000 .

[5]  J. Tour,et al.  Molecular electronics. Synthesis and testing of components. , 2000, Accounts of chemical research.

[6]  F. Diederich,et al.  Molecular Switching: A Fully Reversible, Optically Active Photochemical Switch Based on a Tetraethynylethene‐1,1′‐Binaphthalene Hybrid System , 2000 .

[7]  François Diederich,et al.  Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen , 2000 .

[8]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[9]  Jeffrey S. Moore,et al.  Hexagonal Packing of Oligo(m-phenylene ethynylene)s in the Solid State: Helical Nanotubules , 2000 .

[10]  G. Linstrumelle,et al.  Palladium-Catalyzed Regioselective Coupling of Propargylic Substrates with Terminal Alkynes. Application to the Synthesis of 1,2-Dien-4-ynes , 2000 .

[11]  C. Tessier,et al.  ortho-Arene Cyclynes, Related Heterocyclynes, and Their Metal Chemistry. , 1999, Chemical reviews.

[12]  F. Diederich,et al.  CYCLIC AND LINEAR ACETYLENIC MOLECULAR SCAFFOLDING , 1999 .

[13]  M. Haley,et al.  Macrocyclic Oligo(phenylacetylenes) and Oligo(phenyldiacetylenes) , 1999 .

[14]  U. Bunz Carbon-Rich Molecular Objects from Multiply Ethynylated π-Complexes , 1999 .

[15]  P. Seiler,et al.  EIN NEUER DREIFACHER CHROMOPHORER MOLEKULARER SCHALTER: PH- UND LICHTABHANGIGE SCHALTCYCLEN , 1999 .

[16]  Paul Seiler,et al.  A Novel Three-Way Chromophoric Molecular Switch: pH and Light Controllable Switching Cycles. , 1999, Angewandte Chemie.

[17]  Yves Rubin,et al.  Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks , 1999 .

[18]  A. Meijere,et al.  Macrocyclic Structurally Homoconjugated Oligoacetylenes: Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotanes , 1999 .

[19]  M. Sisido,et al.  Optically Active Poly(aryl carbonates) Consisting of Axially Chiral Units. Chiral Binaphthyl Group Induced Helical Polymer , 1998 .

[20]  B. Novak,et al.  Trapped kinetic states, chiral amplification and molecular chaperoning in synthetic polymers : chiral induction in polyguanidines through ion pair interactions , 1998 .

[21]  R. Janssen,et al.  CIRCULARLY POLARIZED ELECTROLUMINESCENCE FROM A POLYMER LIGHT-EMITTING DIODE , 1997 .

[22]  Jeffrey S. Moore Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .

[23]  F. Diederich,et al.  Tetraethynylethene Molecular Scaffolding , 1997 .

[24]  S. Roberts,et al.  Synthesis of optically active allenes using tandem enzyme and palladium-catalysed reactions , 1997 .

[25]  S. Meskers,et al.  Circular Dichroism and Circular Polarization of Photoluminescence of Highly Ordered Poly{3,4-di[(S)-2-methylbutoxy]thiophene} , 1996 .

[26]  F. Diederich,et al.  Towards the Synthesis of Tetraethynylallene , 1996 .

[27]  F. Diederich,et al.  Tricyclo[6.2.0.03,6]deca‐1,3,6,8‐tetraene: A Remarkably Stable para‐Quinodimethane from a Novel Rearrangement Reaction , 1993 .

[28]  P. Seiler,et al.  Ein Tricyclo[6.2.0.03,6]deca‐1,3,6,8‐tetraen: Bildung eines bemerkenswert stabilen para‐Chinodimethans in einer neuartigen Umlagerungsreaktion , 1993 .

[29]  P. Seiler,et al.  Tetrakis(trialkylsilylethinyl)butatrien und 1,1,4,4‐Tetrakis(trialkylsilylethinyl)‐1,3‐butadien: neue kreuzkonjugierte Chromophore , 1993 .

[30]  F. Diederich,et al.  Tetrakis(trialkylsilylethynyl)butatriene and 1,1,4,4‐Tetrakis(trialkylsilylethynyl)‐1,3‐butadiene: Novel Cross‐Conjugated Chromophores , 1993 .

[31]  G. Linstrumelle,et al.  An efficient palladium-catalysed reaction of propargyl halides tosylates and acetates with terminal alkynes , 1993 .

[32]  J. Tsuji,et al.  The palladium-catalyzed reactions of 2-alkynyl carbonates with terminal acetylenes. A new synthetic method for 1,2-dien-4-ynes , 1991 .

[33]  G. Koten,et al.  Synthesis of Marasin and 9-Me-Marasin, (Nona- and Deca-6,8-diyne-3,4-dienol). , 1988 .

[34]  H. Wynberg,et al.  Carbon network building blocks: triethynyl methanol and derivatives , 1988 .

[35]  Guy Solladie,et al.  Flüssigkristalle: ein Werkzeug für Chiralitätsuntersuchungen , 1984 .

[36]  G. Solladié,et al.  Liquid Crystals: A Tool for Studies on Chirality , 1984 .

[37]  C. J. Elsevier,et al.  Anti-stereoselectivity in the palladium(0)-catalyzed conversion of propargylic esters into allenes by phenylzinc chloride , 1983 .

[38]  K. Ruitenberg,et al.  Organometal-mediated synthesis of conjugated allenynes, allenediynes, vinylallenes and diallenes , 1983 .

[39]  C. J. Elsevier,et al.  Allenylpalladium(II) species: possible intermediates in the tetrakis(triphenylphosphine)palladium(0)-catalysed formation of allenes from prop-2-ynylic substrates , 1983 .

[40]  P. Weyerstahl,et al.  Approach to the synthesis of “hexachloro tris-σ-homobenzene” , 1981 .

[41]  K. Ruitenberg,et al.  Palladium(O)-promoted synthesis of functionally substituted allenes by means of organozinc compounds , 1981 .

[42]  G. Linstrumelle,et al.  Palladium-catalyzed synthesis of allenes. , 1980 .