Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[1]  C. Pedrós-Alió,et al.  Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria , 2014, Proceedings of the National Academy of Sciences.

[2]  F. Rodríguez-Valera,et al.  Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria , 2013, Scientific Reports.

[3]  J. Bowman,et al.  Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent , 2013, The ISME Journal.

[4]  Haiwei Luo,et al.  Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. , 2013, Environmental microbiology.

[5]  D. Kirchman,et al.  Bioenergetics of photoheterotrophic bacteria in the oceans. , 2013, Environmental microbiology reports.

[6]  S. Spring,et al.  Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein , 2013, PloS one.

[7]  Omri M. Finkel,et al.  Global abundance of microbial rhodopsins , 2012, The ISME Journal.

[8]  M. Koblížek,et al.  Influence of Light on Carbon Utilization in Aerobic Anoxygenic Phototrophs , 2012, Applied and Environmental Microbiology.

[9]  Z. Wang,et al.  Function and Regulation of Vibrio campbellii Proteorhodopsin: Acquired Phototrophy in a Classical Organoheterotroph , 2012, PloS one.

[10]  A. Goesmann,et al.  Genomics of the Proteorhodopsin-Containing Marine Flavobacterium Dokdonia sp. Strain MED134 , 2011, Applied and Environmental Microbiology.

[11]  E. Delong,et al.  Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium , 2011, The ISME Journal.

[12]  M. Pujo-Pay,et al.  Vertical and longitudinal gradients in HNA-LNA cell abundances and cytometric characteristics in the Mediterranean Sea , 2011 .

[13]  Daniel Patrick Smith,et al.  Energy Starved Candidatus Pelagibacter Ubique Substitutes Light-Mediated ATP Production for Endogenous Carbon Respiration , 2011, PloS one.

[14]  R. Neutze,et al.  Proteorhodopsin Phototrophy Promotes Survival of Marine Bacteria during Starvation , 2010, PLoS biology.

[15]  A. Wichels,et al.  Constitutive Expression of the Proteorhodopsin Gene by a Flavobacterium Strain Representative of the Proteorhodopsin-Producing Microbial Community in the North Sea , 2010, Applied and Environmental Microbiology.

[16]  Matthew Z. DeMaere,et al.  The genomic basis of trophic strategy in marine bacteria , 2009, Proceedings of the National Academy of Sciences.

[17]  R. Cavicchioli,et al.  Remarkable resistance to UVB of the marine bacterium Photobacterium angustum explained by an unexpected role of photolyase , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[18]  T. Williams,et al.  Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256 , 2009, The ISME Journal.

[19]  I. Paulsen,et al.  Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria) , 2008, Proceedings of the National Academy of Sciences.

[20]  Jed A. Fuhrman,et al.  Proteorhodopsins: an array of physiological roles? , 2008, Nature Reviews Microbiology.

[21]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples , 2008, PloS one.

[22]  M. Cottrell,et al.  Abundant proteorhodopsin genes in the North Atlantic Ocean. , 2007, Environmental microbiology.

[23]  S. Giovannoni,et al.  Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site , 2007, The ISME Journal.

[24]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[25]  S. Giovannoni,et al.  The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine Bacteria Possessing Proteorhodopsin , 2007, Applied and Environmental Microbiology.

[26]  R. Neutze,et al.  Light stimulates growth of proteorhodopsin-containing marine Flavobacteria , 2007, Nature.

[27]  E. Delong,et al.  Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea , 2006, Nature.

[28]  S. Giovannoni,et al.  Proteorhodopsin in the ubiquitous marine bacterium SAR11 , 2005, Nature.

[29]  J. Spudich,et al.  New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins , 2005, PLoS biology.

[30]  H. Maske,et al.  Growth efficiency and respiration at different growth rates in glucose-limited chemostats with natural marine bacteria populations , 2005 .

[31]  Oded Béjà,et al.  Different SAR86 subgroups harbour divergent proteorhodopsins. , 2004, Environmental microbiology.

[32]  E. Delong,et al.  Proteorhodopsin genes are distributed among divergent marine bacterial taxa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Spudich,et al.  Spectroscopic and Photochemical Characterization of a Deep Ocean Proteorhodopsin* , 2003, Journal of Biological Chemistry.

[34]  Marion Leclerc,et al.  Proteorhodopsin phototrophy in the ocean , 2001, Nature.

[35]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[36]  H. Maske,et al.  GROWTH EFFICIENCY, GROWTH RATE AND THE REMINERALIZATION OF ORGANIC SUBSTRATE BY BACTERIOPLANKTON : REVISITING THE PIRT MODEL , 1999 .

[37]  S. Kjelleberg,et al.  Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256 , 1996, Applied and environmental microbiology.

[38]  S. Kjelleberg,et al.  Responses of Marine Bacteria Under Starvation Conditions at a Solid-Water Interface , 1983, Applied and environmental microbiology.

[39]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  A. Courties Les effets de la lumière sur le métabolisme du carbone des bactéries marines contenant la protéorhodopsine : cas d’étude en culture continue d’une Gammaprotéobactérie Photobacterium angustum S14 , 2013 .

[41]  P. Little Genome analysis , 1996 .

[42]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[43]  S. Jacobs,et al.  The determination of nitrogen in biological materials. , 1965, Methods of biochemical analysis.