Application of sensitive hydrogels in flow control

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW For any polymer gel, the amount of solvent uptake is dependent upon the chemical nature of the gel and the nature of its environment— solvent composition, temperature, pH, and so on. We discuss the use of different hydrogels based on crosslinked poly(N-isopro- pylacrylamide) and copolymers with basic or acidic groups as materials for flow control. The design of a chemo-mechanical valve is described. The liquid flows directly through a gel actuator, which consists of a cylinder filled with small particles of the sensitive crosslinked polymer. The flow rate as well as the pressure drop is measured in dependence on the solvent properties. The sensitivity of the gels as well as the time behavior of the valve-function is correlated with the dependence of the degree of swelling on the environment and the swelling and shrinking kinetics of the gels. The stimulus must permeate the gel itself before a gel can respond to the stimulus. By NMR-imaging it is possible to follow the transport processes inside the gel in real-time. With the presented experimental arrangement we could show that sensitive polymers can be used for controlling the flow in dependence on temperature, pH and content of organic solvents in water. Furthermore, the synthesis of a photo-crosslinkable sensitive polymer is described, synthesized and suggestions for an application of thin layers of this polymer in micro-system techniques are made. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  S. Gehrke Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels , 1993 .

[2]  S. Matsukawa,et al.  A study on dynamics of water in crosslinked poly (N-isopropylacrylamide) gel by N.M.R. spectroscopy , 1998 .

[3]  Fang Zeng,et al.  Network formation in poly(N-isopropyl acrylamide)/water solutions during phase separation , 1998 .

[4]  Jan Feijen,et al.  Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers , 1993 .

[5]  Howard G. Schild,et al.  Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide) , 1991 .

[6]  B. Wolf,et al.  Measured and calculated solubility of polymers in mixed solvents: Co‐nonsolvency , 1978 .

[7]  T. Nonaka,et al.  Permeation of solutes with different molecular size and hydrophobicity through the poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membrane , 1995 .

[8]  J. Feijen,et al.  Molecular separation by thermosensitive hydrogel membranes , 1991 .

[9]  B. Vincent,et al.  Swelling behavior of poly- N-isopropylacrylamide microgel particles in alcoholic solutions , 1998 .

[10]  K. Kubota,et al.  Single-chain transition of poly(N-isopropylacrylamide) in water , 1990 .

[11]  D. H. Napper,et al.  Coil-to-Globule Type Transitions and Swelling of Poly(N-isopropylacrylamide) and Poly(acrylamide) at Latex Interfaces in Alcohol–Water Mixtures , 1996 .

[12]  M. Plötner,et al.  Photopatterning of thermally sensitive hydrogels useful for microactuators , 1999 .

[13]  H. Adler,et al.  Photocrosslinking of thin polymer films – materials for sensors and actuators , 1999 .

[14]  Takehiko Gotoh,et al.  Novel synthesis of thermosensitive porous hydrogels , 1998 .

[15]  H. Adler,et al.  Temperature and pH dependent solubility of novel poly(N‐isopropylacrylamide)‐copolymers , 2000 .

[16]  Andreas Richter,et al.  Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point , 1999 .

[17]  S. Hirotsu,et al.  Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels , 1991 .

[18]  H. Adler,et al.  Temperature and pH sensitive polymers in water ‐ from solution to thin films , 1999 .

[19]  Toyoichi Tanaka,et al.  Volume phase transition and related phenomena of polymer gels , 1993 .

[20]  Yong Li,et al.  Kinetics of swelling and shrinking of gels , 1990 .

[21]  S. Hirotsu Phase transition of a polymer gel in pure and mixed solvent media , 1987 .

[22]  A. Whittaker,et al.  N.m.r. imaging of the diffusion of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate) , 1997 .

[23]  H. Schneider,et al.  The use of NMR relaxation and NMR imaging in studying the aging of rubber , 1998 .

[24]  M. Shibayama,et al.  Phase Separation Induced Mechanical Transition of Poly(N-isopropylacrylamide)/Water Isochore Gels , 1994 .

[25]  N. Turro,et al.  Consolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions: a look at spin-labeled polymers , 1992 .

[26]  H. Adler,et al.  Photocrosslinking of thin films of temperature-sensitive polymers , 1999 .

[27]  M. Shibayama,et al.  Structure relaxation of hydrophobically aggregated poly(N-isopropylacrylamide) in water , 1996 .

[28]  K. Otake,et al.  Thermal analysis of the volume phase transition with N-isopropylacrylamide gels , 1990 .

[29]  Frantisek Svec,et al.  Thermally responsive rigid polymer monoliths , 1997 .