Influence Estimation and Maximization via Neural Mean-Field Dynamics

We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems on heterogeneous diffusion networks. Our new framework leverages the Mori-Zwanzig formalism to obtain an exact evolution equation of the individual node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators. Directly using information diffusion cascade data, our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities. Connections between parameter learning and optimal control are also established, leading to a rigorous and implementable algorithm for training NMF. Moreover, we show that the projected gradient descent method can be employed to solve the challenging influence maximization problem, where the gradient is computed extremely fast by integrating NMF forward in time just once in each iteration. Extensive empirical studies show that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data. Keywords— Diffusion networks, influence estimation, Mori-Zwanzig formalism, influence maximization

[1]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[2]  H. Zha,et al.  A jump stochastic differential equation approach for influence prediction on heterogenous networks , 2020 .

[3]  Bernhard Schölkopf,et al.  Structure and dynamics of information pathways in online media , 2012, WSDM.

[4]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[5]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[6]  Zhenzhong Chen,et al.  Micro-Video Popularity Prediction Via Multimodal Variational Information Bottleneck , 2020, IEEE Transactions on Multimedia.

[7]  Le Song,et al.  Influence Estimation and Maximization in Continuous-Time Diffusion Networks , 2016, ACM Trans. Inf. Syst..

[8]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[9]  Yu Zheng,et al.  Inferring Traffic Cascading Patterns , 2017, SIGSPATIAL/GIS.

[10]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[11]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[12]  Faryad Darabi Sahneh,et al.  Epidemic spread in human networks , 2011, IEEE Conference on Decision and Control and European Control Conference.

[13]  Le Song,et al.  Scalable Influence Estimation in Continuous-Time Diffusion Networks , 2013, NIPS.

[14]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[15]  Alfredo Cuzzocrea,et al.  Personalized DeepInf: Enhanced Social Influence Prediction with Deep Learning and Transfer Learning , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[16]  Stefano Ermon,et al.  Feature-Enhanced Probabilistic Models for Diffusion Network Inference , 2012, ECML/PKDD.

[17]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[18]  Laks V. S. Lakshmanan,et al.  CELF++: optimizing the greedy algorithm for influence maximization in social networks , 2011, WWW.

[19]  Cheng Li,et al.  DeepCas: An End-to-end Predictor of Information Cascades , 2016, WWW.

[20]  Hung T. Nguyen,et al.  Outward Influence and Cascade Size Estimation in Billion-scale Networks , 2017, Proc. ACM Meas. Anal. Comput. Syst..

[21]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[22]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Vince D. Calhoun,et al.  Log-sum enhanced sparse deep neural network , 2020, Neurocomputing.

[24]  Michalis Vazirgiannis,et al.  Influence Maximization Using Influence and Susceptibility Embeddings , 2020, ICWSM.

[25]  Joel Oren,et al.  Influence at Scale: Distributed Computation of Complex Contagion in Networks , 2015, KDD.

[26]  Le Song,et al.  Multistage Campaigning in Social Networks , 2016, NIPS.

[27]  Xiaokui Xiao,et al.  Influence Maximization in Near-Linear Time: A Martingale Approach , 2015, SIGMOD Conference.

[28]  Hongyuan Zha,et al.  Influence Prediction for Continuous-Time Information Propagation on Networks , 2015, Networks Heterog. Media.

[29]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[30]  Network Diffusions via Neural Mean-Field Dynamics , 2020, NeurIPS.

[31]  Bernhard Scholkopf,et al.  Submodular Inference of Diffusion Networks from Multiple Trees , 2012, ICML.

[32]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[33]  Le Song,et al.  Learning Networks of Heterogeneous Influence , 2012, NIPS.

[34]  Hong Cheng,et al.  A Model-Free Approach to Infer the Diffusion Network from Event Cascade , 2016, CIKM.

[35]  Akash Mittal,et al.  GCOMB: Learning Budget-constrained Combinatorial Algorithms over Billion-sized Graphs , 2020, NeurIPS.

[36]  Gyula Y Katona,et al.  SIS Epidemic Propagation on Hypergraphs , 2015, Bulletin of Mathematical Biology.

[37]  Jakob Gulddahl Rasmussen,et al.  Lecture Notes: Temporal Point Processes and the Conditional Intensity Function , 2018, 1806.00221.

[38]  Yuxiao Dong,et al.  DeepInf: Social Influence Prediction with Deep Learning , 2018, KDD.

[39]  Edith Cohen,et al.  Size-Estimation Framework with Applications to Transitive Closure and Reachability , 1997, J. Comput. Syst. Sci..

[40]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[41]  Xiaokui Xiao,et al.  Influence maximization: near-optimal time complexity meets practical efficiency , 2014, SIGMOD Conference.

[42]  Xueqi Cheng,et al.  Popularity Prediction on Social Platforms with Coupled Graph Neural Networks , 2019, WSDM.

[43]  Fragkiskos D. Malliaros,et al.  Multi-Task Learning for Influence Estimation and Maximization , 2020, IEEE Transactions on Knowledge and Data Engineering.

[44]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[45]  Bernhard Schölkopf,et al.  Influence Maximization in Continuous Time Diffusion Networks , 2012, ICML.

[46]  Jennifer Wortman,et al.  Viral Marketing and the Diffusion of Trends on Social Networks , 2008 .

[47]  Le Song,et al.  Influence Function Learning in Information Diffusion Networks , 2014, ICML.

[48]  Edith Cohen,et al.  Sketch-based Influence Maximization and Computation: Scaling up with Guarantees , 2014, CIKM.

[49]  Istvan Z Kiss,et al.  Epidemic spread in networks: Existing methods and current challenges. , 2014, Mathematical modelling of natural phenomena.

[50]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[51]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[52]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[53]  Santiago Segarra,et al.  Connecting the Dots: Identifying Network Structure via Graph Signal Processing , 2018, IEEE Signal Processing Magazine.

[54]  Yuchen Li,et al.  Influence Maximization on Social Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[55]  Pascal Frossard,et al.  Learning Graphs From Data: A Signal Representation Perspective , 2018, IEEE Signal Processing Magazine.

[56]  Min Huang,et al.  TIFIM: A Two-stage Iterative Framework for Influence Maximization in Social Networks , 2019, Appl. Math. Comput..

[57]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[58]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[59]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Jure Leskovec,et al.  On the Convexity of Latent Social Network Inference , 2010, NIPS.