Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media

Abstract This paper presents the algebraic dynamic multilevel method (ADM) for compositional flow in three dimensional heterogeneous porous media in presence of capillary and gravitational effects. As a significant advancement compared to the ADM for immiscible flows (Cusini et al., 2016) [33] , here, mass conservation equations are solved along with k-value based thermodynamic equilibrium equations using a fully-implicit (FIM) coupling strategy. Two different fine-scale compositional formulations are considered: (1) the natural variables and (2) the overall-compositions formulation. At each Newton's iteration the fine-scale FIM Jacobian system is mapped to a dynamically defined (in space and time) multilevel nested grid. The appropriate grid resolution is chosen based on the contrast of user-defined fluid properties and on the presence of specific features (e.g., well source terms). Consistent mapping between different resolutions is performed by the means of sequences of restriction and prolongation operators. While finite-volume restriction operators are employed to ensure mass conservation at all resolutions, various prolongation operators are considered. In particular, different interpolation strategies can be used for the different primary variables, and multiscale basis functions are chosen as pressure interpolators so that fine scale heterogeneities are accurately accounted for across different resolutions. Several numerical experiments are conducted to analyse the accuracy, efficiency and robustness of the method for both 2D and 3D domains. Results show that ADM provides accurate solutions by employing only a fraction of the number of grid-cells employed in fine-scale simulations. As such, it presents a promising approach for large-scale simulations of multiphase flow in heterogeneous reservoirs with complex non-linear fluid physics.

[1]  Stein Krogstad,et al.  Adjoint Multiscale Mixed Finite Elements , 2011 .

[2]  D. W. Peaceman Interpretation of Well-Block Pressures in Numerical Reservoir Simulation(includes associated paper 6988 ) , 1978 .

[3]  Yalchin Efendiev,et al.  Multiscale simulations of porous media flows in flow-based coordinate system , 2008 .

[4]  Yixuan Wang,et al.  Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media , 2014, J. Comput. Phys..

[5]  Olav Møyner,et al.  A Multiscale Restriction-Smoothed Basis Method for Compressible Black-Oil Models , 2016 .

[6]  M. B. Standing A Set of Equations for Computing Equilibrium Ratios of a Crude Oil/Natural Gas System at Pressures Below 1,000 psia , 1979 .

[7]  van den Pmj Paul Hof,et al.  The egg model – a geological ensemble for reservoir simulation , 2014 .

[8]  Olav Møyner,et al.  The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB) , 2016, J. Comput. Phys..

[9]  J. Nordbotten,et al.  On the relationship between the multiscale finite-volume method and domain decomposition preconditioners , 2008 .

[10]  George Shu Heng Pau,et al.  An adaptive mesh refinement algorithm for compressible two-phase flow in porous media , 2012, Computational Geosciences.

[11]  Hadi Hajibeygi,et al.  Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS) , 2016, J. Comput. Phys..

[12]  Hamdi A. Tchelepi,et al.  Algebraic multiscale solver for flow in heterogeneous porous media , 2014, J. Comput. Phys..

[13]  T. Ertekin,et al.  Development and Application of Dynamic and Static Local Grid Refinement Algorithms for Water Coning Studies , 1997 .

[14]  Jostein R. Natvig,et al.  Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media , 2015, J. Comput. Phys..

[15]  Paulus Maria Boerrigter,et al.  Application of Dynamic Gridding Techniques to IOR/EOR Processes , 2011 .

[16]  Rainer Helmig,et al.  Efficient multiphysics modelling with adaptive grid refinement using a MPFA method , 2014, Computational Geosciences.

[17]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[18]  Hamdi A. Tchelepi,et al.  Compositional Multiscale Finite-Volume Formulation , 2014 .

[19]  Franklin M. Orr,et al.  Theory of Gas Injection Processes , 2005 .

[20]  Hamdi A. Tchelepi,et al.  Multiscale finite-element method for linear elastic geomechanics , 2017, J. Comput. Phys..

[21]  Christopher C. Pain,et al.  A dynamic mesh approach for simulation of immiscible viscous fingering , 2015, ANSS 2015.

[22]  Hamdi A. Tchelepi,et al.  Multiscale Finite Volume Method for Discrete Fracture Modeling with Unstructured Grids , 2017 .

[23]  A. Kozlova,et al.  A Real-Field Multiscale Black-Oil Reservoir Simulator , 2015, ANSS 2015.

[24]  Patrick Jenny,et al.  Iterative Galerkin-enriched multiscale finite-volume method , 2014, J. Comput. Phys..

[25]  Mayur Pal,et al.  Multiscale Finite-Volume CVD-MPFA Formulations on Structured and Unstructured Grids , 2016, Multiscale Model. Simul..

[26]  Hadi Hajibeygi,et al.  Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media , 2016, J. Comput. Phys..

[27]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[28]  Hamdi A. Tchelepi,et al.  Parallel Enriched Algebraic Multiscale Solver , 2017 .

[29]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[30]  Hussein Hoteit,et al.  Making Field-Scale Chemical EOR Simulations a Practical Reality using Dynamic Gridding , 2014 .

[31]  K.-A. Lie,et al.  Successful application of multiscale methods in a real reservoir simulator environment , 2016, Computational Geosciences.

[32]  Yalchin Efendiev,et al.  An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media , 2006, Multiscale Model. Simul..

[33]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[34]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[35]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[36]  Hamdi A. Tchelepi,et al.  Algebraic Multiscale Linear Solver for Heterogeneous Elliptic Problems , 2012 .

[37]  John A. Trangenstein,et al.  Application of Adaptive Mesh-Refinement With a New Higher-Order Method in Simulation of a North Sea Micellar/Polymer Flood , 1995 .

[38]  Hamdi A. Tchelepi,et al.  Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations , 2009, J. Comput. Phys..

[39]  Ivan Lunati,et al.  A Multilevel Multiscale Finite-Volume Method , 2013, J. Comput. Phys..

[40]  Michael G. Edwards,et al.  A higher-order Godunov scheme coupled with dynamic local grid refinement for flow in a porous medium , 1996 .

[41]  P. H. Sammon,et al.  Dynamic Grid Refinement and Amalgamation for Compositional Simulation , 2003 .

[42]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[43]  Hui Zhou,et al.  Operator-Based Multiscale Method for Compressible Flow , 2006 .

[44]  Michael G. Edwards,et al.  Dynamically Adaptive Godunov Schemes With Renormalization in Reservoir Simulation , 1993 .

[45]  D. W. Peaceman Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability , 1983 .

[46]  K. H. Coats AN EQUATION OF STATE COMPOSITIONAL MODEL , 1980 .

[47]  H. Tchelepi,et al.  Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity , 2008 .

[48]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[49]  Mehdi Mosharaf Dehkordi,et al.  A multi-resolution multiscale finite volume method for simulation of fluid flows in heterogeneous porous media , 2013, J. Comput. Phys..

[50]  Tsuyoshi Matsuura,et al.  Dynamic Local Grid Refinement for Multiple Contact Miscible Gas Injection , 2011, IPTC 2011.

[51]  G. R. Shubin,et al.  An Adaptive Grid Finite Difference Method for Conservation Laws , 1983 .

[52]  Diederik W. van Batenburg,et al.  Application of Dynamic Gridding Techniques to IOR/EOR-Processes , 2011, ANSS 2011.

[53]  Olav Møyner,et al.  A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids , 2016, J. Comput. Phys..

[54]  Ivan Lunati,et al.  An Operator Formulation of the Multiscale Finite-Volume Method with Correction Function , 2009, Multiscale Model. Simul..

[55]  Patrick Jenny,et al.  Zonal Multiscale Finite-Volume framework , 2017, J. Comput. Phys..

[56]  H. Tchelepi,et al.  A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media , 2010 .

[57]  Hamdi A. Tchelepi,et al.  Monotone multiscale finite volume method , 2016, Computational Geosciences.

[58]  Hadi Hajibeygi,et al.  Multiscale gradient computation for flow in heterogeneous porous media , 2017, J. Comput. Phys..

[59]  Richard D. Hornung,et al.  Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .

[60]  Hamdi A. Tchelepi,et al.  Comparison of nonlinear formulations for two-phase multi-component EoS based simulation , 2012 .