Composite material made of plasmonic nanoshells with quantum dot cores: loss-compensation and ε-near-zero physical properties.
暂无分享,去创建一个
[1] Filippo Capolino,et al. Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited] , 2011 .
[2] R. Araneo,et al. Efficient Evaluation of the 3-D Periodic Green's Function Through the Ewald Method , 2008, IEEE Transactions on Microwave Theory and Techniques.
[3] Lars Thylén,et al. Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss , 2010 .
[4] Mélanie Ferrie,et al. Gain induced optical transparency in metamaterials , 2011 .
[5] Luis Rodríguez-Fernández,et al. Linear optical response of metallic nanoshells in different dielectric media , 2008 .
[6] Frank S. Ham,et al. Energy Bands in Periodic Lattices—Green's Function Method , 1961 .
[7] Ekaterina Ponizovskaya Devine,et al. A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss , 2008 .
[8] Yong Zeng,et al. Electrostatic theory for designing lossless negative permittivity metamaterials. , 2010, Optics letters.
[9] D. Reinhoudt,et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.
[10] Juan R. Mosig,et al. Periodic Green's function for skewed 3‐D lattices using the Ewald transformation , 2007 .
[11] Ekaterina Ponizovskaya Devine,et al. Zero permittivity materials: Band gaps at the visible , 2002 .
[12] Z. Kam,et al. Absorption and Scattering of Light by Small Particles , 1998 .
[13] A. Lakhtakia,et al. On the application of homogenization formalisms to active dielectric composite materials , 2009, 0901.2092.
[14] Elia Palange,et al. $$|\epsilon|$$-Near-zero materials in the near-infrared , 2011 .
[15] Filippo Capolino,et al. Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres. , 2011, Optics express.
[16] A. De Luca,et al. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. , 2011, ACS nano.
[17] Lars Thylén,et al. Dielectric function of quantum dots in the strong confinement regime , 2010 .
[18] V. Klimov,et al. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. , 2006, Journal of the American Chemical Society.
[19] David R. Smith,et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.
[20] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .
[21] H. Ågren,et al. A lossless negative dielectric constant from quantum dot exciton polaritons. , 2008, Nano letters.
[22] M. L. Curri,et al. Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing , 2012, Nanotechnology.
[23] Filippo Capolino,et al. Single Dipole Approximation for Modeling Collections of Nanoscatterers , 2009 .
[24] M. A. Vincenti,et al. Singularity-driven second- and third-harmonic generation at -near-zero crossing points , 2011 .
[25] Naomi J. Halas,et al. Linear optical properties of gold nanoshells , 1999 .
[26] U. Chettiar,et al. Loss-free and active optical negative-index metamaterials , 2010, Nature.
[27] Nader Engheta,et al. Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials , 2007 .
[28] Christopher B. Murray,et al. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .
[29] Alp Kustepeli,et al. On the splitting parameter in the Ewald method , 2000 .
[30] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[31] W. Steen. Absorption and Scattering of Light by Small Particles , 1999 .
[32] Mário G. Silveirinha,et al. Generalized Lorentz-Lorenz formulas for microstructured materials , 2007 .
[33] K. Webb,et al. Semiconductor quantum dot mixture as a lossless negative dielectric constant optical material , 2008 .
[34] Richard W Ziolkowski,et al. CNP optical metamaterials. , 2008, Optics express.
[35] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[36] M. L. Curri,et al. Precision patterning with luminescent nanocrystal-functionalized beads. , 2010, Langmuir : the ACS journal of surfaces and colloids.