Composite material made of plasmonic nanoshells with quantum dot cores: loss-compensation and ε-near-zero physical properties.

A theoretical investigation of loss-compensation capabilities in composite materials made of plasmonic nanoshells is carried out by considering quantum dots (QDs) as the nanoshells' cores. The QD and metal permittivities are modeled according to published experimental data. We determine the modes with real or complex wavenumber able to propagate in a 3D periodic lattice of nanoshells. Mode analysis is also used to assess that only one propagating mode is dominant in the composite material whose optical properties can hence be described via homogenization theory. Therefore, the material effective permittivity is found by comparing different techniques: (i) the mentioned mode analysis, (ii) Maxwell Garnett mixing rule and (iii) the Nicolson-Ross-Weir method based on transmission and reflection when considering a metamaterial of finite thickness. The three methods are in excellent agreement, because the nanoshells considered in this paper are very subwavelength, thus justifying the parameter homogenization. We show that QDs are able to provide loss-compensated ε-near-zero metamaterials and also loss-compensated metamaterials with large negative values of permittivity. Besides compensating for losses, the strong gain via QD can provide optical amplification with particular choices of the nanoshell and lattice dimensions.

[1]  Filippo Capolino,et al.  Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited] , 2011 .

[2]  R. Araneo,et al.  Efficient Evaluation of the 3-D Periodic Green's Function Through the Ewald Method , 2008, IEEE Transactions on Microwave Theory and Techniques.

[3]  Lars Thylén,et al.  Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss , 2010 .

[4]  Mélanie Ferrie,et al.  Gain induced optical transparency in metamaterials , 2011 .

[5]  Luis Rodríguez-Fernández,et al.  Linear optical response of metallic nanoshells in different dielectric media , 2008 .

[6]  Frank S. Ham,et al.  Energy Bands in Periodic Lattices—Green's Function Method , 1961 .

[7]  Ekaterina Ponizovskaya Devine,et al.  A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss , 2008 .

[8]  Yong Zeng,et al.  Electrostatic theory for designing lossless negative permittivity metamaterials. , 2010, Optics letters.

[9]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[10]  Juan R. Mosig,et al.  Periodic Green's function for skewed 3‐D lattices using the Ewald transformation , 2007 .

[11]  Ekaterina Ponizovskaya Devine,et al.  Zero permittivity materials: Band gaps at the visible , 2002 .

[12]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[13]  A. Lakhtakia,et al.  On the application of homogenization formalisms to active dielectric composite materials , 2009, 0901.2092.

[14]  Elia Palange,et al.  $$|\epsilon|$$-Near-zero materials in the near-infrared , 2011 .

[15]  Filippo Capolino,et al.  Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres. , 2011, Optics express.

[16]  A. De Luca,et al.  Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. , 2011, ACS nano.

[17]  Lars Thylén,et al.  Dielectric function of quantum dots in the strong confinement regime , 2010 .

[18]  V. Klimov,et al.  Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. , 2006, Journal of the American Chemical Society.

[19]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[20]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[21]  H. Ågren,et al.  A lossless negative dielectric constant from quantum dot exciton polaritons. , 2008, Nano letters.

[22]  M. L. Curri,et al.  Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing , 2012, Nanotechnology.

[23]  Filippo Capolino,et al.  Single Dipole Approximation for Modeling Collections of Nanoscatterers , 2009 .

[24]  M. A. Vincenti,et al.  Singularity-driven second- and third-harmonic generation at -near-zero crossing points , 2011 .

[25]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[26]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[27]  Nader Engheta,et al.  Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials , 2007 .

[28]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[29]  Alp Kustepeli,et al.  On the splitting parameter in the Ewald method , 2000 .

[30]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[31]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[32]  Mário G. Silveirinha,et al.  Generalized Lorentz-Lorenz formulas for microstructured materials , 2007 .

[33]  K. Webb,et al.  Semiconductor quantum dot mixture as a lossless negative dielectric constant optical material , 2008 .

[34]  Richard W Ziolkowski,et al.  CNP optical metamaterials. , 2008, Optics express.

[35]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[36]  M. L. Curri,et al.  Precision patterning with luminescent nanocrystal-functionalized beads. , 2010, Langmuir : the ACS journal of surfaces and colloids.