Strain control of phase transition and magnetocaloric effect in Nd0.5Sr0.5MnO3 thin films

Phase transition and the magnetocaloric effect (MCE) in Nd0.5Sr0.5MnO3 (NSMO) epitaxial thin films were tailored through controlling the lattice-mismatch-induced-strain by depositing on (011)—(La0.18Sr0.82)(Al0.59Ta0.41)O3 and SrTiO3 (STO) single crystalline substrates, respectively. The NSMO film grown on STO, exhibiting uniaxial like tensile strain of 1.3% along the in-plane [100] direction, undergoes a paramagnetic to ferromagnetic transition at ∼210 K followed by a ferromagnetic to A-type antiferromagnetic transition at ∼179 K upon cooling; meanwhile, the film grown on LSAT, exhibiting anisotropic in-plane tensile strains of 0.36% along [100] and 0.50% along [ 0 1 ¯ 1] directions, undergoes further transition to CE-type antiferromagnetic transition at ∼145 K. NSMO/LSAT with such transitions facilitates a strong MCE over a much wider temperature range from 90 to 170 K, with the magnetic entropy change comparable to the recently reported La0.25Ca0.75MnO3 bulk. These findings suggest that control of stra...

[1]  V. Pecharsky,et al.  The effect of cooling rate on magnetothermal properties of Fe49Rh51 , 2020 .

[2]  I. Das,et al.  Investigation of size-dependent magnetic ordering in charge ordered antiferromagnetic nanoparticles via magnetocaloric effect , 2019, Journal of Magnetism and Magnetic Materials.

[3]  I. Tereshina,et al.  Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition , 2018, Acta Materialia.

[4]  A. Herklotz,et al.  Strain coupling of oxygen non-stoichiometry in perovskite thin films , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  M. Marangolo,et al.  Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation , 2017, 1710.08229.

[6]  Heungsoo Kim,et al.  Interfacial room temperature magnetism and enhanced magnetocaloric effect in strained La 0.66 Ca 0.34 MnO 3 /BaTiO 3 heterostructures , 2017 .

[7]  T. Venkatesan,et al.  Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film. , 2016, Nano letters.

[8]  J. Staunton,et al.  Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6 , 2016, 1605.03323.

[9]  Jian Liu,et al.  Electric Field Control of the Magnetocaloric Effect , 2015, Advanced materials.

[10]  T. K. Nath,et al.  Strain modulated large magnetocaloric effect in Sm0.55Sr0.45MnO3 epitaxial films , 2015 .

[11]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[12]  X. Moya,et al.  Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. , 2012, Nature materials.

[13]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[14]  K. K. Nielsen,et al.  High performance magnetocaloric perovskites for magnetic refrigeration , 2012 .

[15]  Huibin Xu,et al.  Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets , 2011, Nature Communications.

[16]  H. Srikanth,et al.  Phase coexistence and magnetocaloric effect in La 5/8-y Pr y Ca 3/8 MnO 3 (y=0.275) , 2010 .

[17]  V. Etgens,et al.  Strain engineering of the magnetocaloric effect in MnAs epilayers. , 2008, Physical review letters.

[18]  R. Venkatesh,et al.  Enhanced magnetocaloric effect in single crystalline Nd0.5Sr0.5MnO3 , 2007 .

[19]  S. Valencia,et al.  Mn valence instability in La2/3Ca1/3Mn03 thin films , 2006, 0909.3037.

[20]  H. Nakao,et al.  Novel orbital ordering induced by anisotropic stress in a manganite thin film. , 2005, Physical review letters.

[21]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[22]  M. Izumi,et al.  Phase control through anisotropic strain in Nd0.5Sr0.5MnO3 thin films , 2005 .

[23]  M. Izumi,et al.  Strain-induced crossover of the metal-insulator transition in perovskite manganites , 2005 .

[24]  Andrew Rowe,et al.  Magnetic refrigeration : Single and multimaterial active magnetic regenerator experiments , 2004 .

[25]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[26]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[27]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[28]  Youwei Du,et al.  Large Magnetic Entropy Change near Charge-Ordered Transition Temperature in Nd0.5Sr0.5MnO3 , 2001 .

[29]  J. Sesé,et al.  Magnetic behavior of Pr 1 − x Ca x MnO 3 in the electric-field-driven insulator-metal transition , 2000 .

[30]  T. Arima,et al.  Effect of uniaxial pressure on orbital ordering in Nd 1-x Sr x MnO 3 , 1999 .

[31]  V. Pecharsky,et al.  Recent Developments in Magnetic Refrigeration , 1999 .

[32]  T. Okuda,et al.  Two-Dimensional Charge-Transport and Spin-Valve Effect in the Layered Antiferromagnet Nd 0.45 Sr 0.55 MnO 3 , 1999 .

[33]  M. Ohashi,et al.  Hole-concentration-induced transformation of the magnetic and orbital structures in Nd 1-x Sr x MnO 3 , 1999, cond-mat/9902337.

[34]  Y. Moritomo,et al.  Antiferromagnetic metallic state in the heavily doped region of perovskite manganites , 1998 .

[35]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[36]  Youwei Du,et al.  Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides , 1997 .

[37]  A. Okazaki,et al.  Lattice constant of strontium titanate at low temperatures , 1973 .

[38]  R. Cowley,et al.  Lattice Dynamics and Phase Transitions of Strontium Titanate , 1964 .