A New Family of Ultralow Loss Reversible Phase‐Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3

Phase‐change materials (PCMs) are seeing tremendous interest for their use in reconfigurable photonic devices; however, the most common PCMs exhibit a large absorption loss in one or both states. Here, Sb2S3 and Sb2Se3 are demonstrated as a class of low loss, reversible alternatives to the standard commercially available chalcogenide PCMs. A contrast of refractive index of Δn = 0.60 for Sb2S3 and Δn = 0.77 for Sb2Se3 is reported, while maintaining very low losses (k < 10−5) in the telecommunications C‐band at 1550 nm. With a stronger absorption in the visible spectrum, Sb2Se3 allows for reversible optical switching using conventional visible wavelength lasers. Here, a stable switching endurance of better than 4000 cycles is demonstrated. To deal with the essentially zero intrinsic absorption losses, a new figure of merit (FOM) is introduced taking into account the measured waveguide losses when integrating these materials onto a standard silicon photonics platform. The FOM of 29 rad phase shift per dB of loss for Sb2Se3 outperforms Ge2Sb2Te5 by two orders of magnitude and paves the way for on‐chip programmable phase control. These truly low‐loss switchable materials open up new directions in programmable integrated photonic circuits, switchable metasurfaces, and nanophotonic devices.

[1]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[2]  F. D. Rosi,et al.  Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300° K , 1966 .

[3]  P. Arun,et al.  LASER-INDUCED CRYSTALLIZATION IN Sb2S3 FILMS , 1997 .

[4]  P. Arun,et al.  Effect of heat treatment on the optical properties of amorphous Sb2S3 film: The possibility of optical storage , 1997 .

[5]  P. Arun,et al.  Potential of Sb2Se3 films for photo-thermal phase change optical storage , 1998 .

[6]  P. Arun,et al.  Laser-induced crystallization in amorphous films of (C = S, Se, Te), potential optical storage media , 1999 .

[7]  Jan Siegel,et al.  Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses , 2004 .

[8]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[9]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[10]  Sungyoul Choi,et al.  Electrical oscillations induced by the metal-insulator transition in VO2 , 2010 .

[11]  Hitoshi Kawashima,et al.  Reversible optical gate switching in Si wire waveguide integrated with Ge 2 Sb 2 Te 5 thin film , 2010 .

[12]  Tianyou Zhai,et al.  Single‐Crystalline Sb2Se3 Nanowires for High‐Performance Field Emitters and Photodetectors , 2010, Advanced materials.

[13]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[14]  Harish Bhaskaran,et al.  Photonic non-volatile memories using phase change materials , 2012 .

[15]  Hitoshi Kawashima,et al.  Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. , 2012, Optics express.

[16]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[17]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[18]  Jiang Tang,et al.  Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. , 2014, ACS applied materials & interfaces.

[19]  Jiang Tang,et al.  Solution‐Processed Antimony Selenide Heterojunction Solar Cells , 2014 .

[20]  Xiaomin Wang,et al.  Ultra-compact, self-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change material , 2014, IEICE Electron. Express.

[21]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[22]  Sailing He,et al.  Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters , 2016 .

[23]  Ivana Gasulla,et al.  Microwave photonics: The programmable processor , 2016 .

[24]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[25]  Liang Gao,et al.  Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics , 2017 .

[26]  Kevin J. Miller,et al.  Silicon waveguide optical switch with embedded phase change material. , 2017, Optics express.

[27]  Dominic Goodwill,et al.  U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. , 2017, Optics express.

[28]  Michael A. Mastro,et al.  Characterizing the tunable refractive index of vanadium dioxide , 2017 .

[29]  Arash Ahmadivand,et al.  VO2‐Based Reconfigurable Antenna Platform with Addressable Microheater Matrix , 2017 .

[30]  V. Consonni,et al.  In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction , 2017 .

[31]  C. Wright,et al.  Nonvolatile All‐Optical 1 × 2 Switch for Chipscale Photonic Networks , 2017 .

[32]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[33]  Paul R. Prucnal,et al.  Progress in neuromorphic photonics , 2017 .

[34]  Hitoshi Kawashima,et al.  Current-driven phase-change optical gate switch using indium–tin-oxide heater , 2017 .

[35]  Seth Lloyd,et al.  Programmable dispersion on a photonic integrated circuit for classical and quantum applications. , 2017, Optics express.

[36]  T. Zentgraf,et al.  Beam switching and bifocal zoom lensing using active plasmonic metasurfaces , 2017, Light: Science & Applications.

[37]  B. Vermang,et al.  On the identification of Sb_2Se_3 using Raman scattering , 2018 .

[38]  Kevin J. Miller,et al.  Optical phase change materials in integrated silicon photonic devices: review , 2018, Optical Materials Express.

[39]  Ion Implantation in Silicon for Trimming the Operating Wavelength of Ring Resonators , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[41]  Atif Shamim,et al.  Fully Inkjet‐Printed VO2‐Based Radio‐Frequency Switches for Flexible Reconfigurable Components , 2018, Advanced Materials Technologies.

[42]  K. V. Sreekanth,et al.  Wide Bandgap Phase Change Material Tuned Visible Photonics , 2018, Advanced Functional Materials.

[43]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[44]  Hong Guo,et al.  High-Speed Implementation of Length-Compatible Privacy Amplification in Continuous-Variable Quantum Key Distribution , 2018, IEEE Photonics Journal.

[45]  B. Vermang,et al.  Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors , 2018, Solar Energy Materials and Solar Cells.

[46]  Lukas Chrostowski,et al.  Silicon Photonics Circuit Design: Methods, Tools and Challenges , 2018 .

[47]  Ming C. Wu,et al.  Silicon photonic wavelength cross-connect with integrated MEMS switching , 2019, APL Photonics.

[48]  Masaya Notomi,et al.  Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides , 2019, Nature Photonics.

[49]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[50]  M. Placidi,et al.  Multiwavelength excitation Raman scattering study of Sb2Se3 compound: fundamental vibrational properties and secondary phases detection , 2019, 2D Materials.

[51]  Linjie Zhou,et al.  Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. , 2019, Science bulletin.

[52]  F. Setzpfandt,et al.  Resonant dielectric metasurfaces: active tuning and nonlinear effects , 2019, Journal of Physics D: Applied Physics.

[53]  Indranil Chakraborty,et al.  Photonic In-Memory Computing Primitive for Spiking Neural Networks Using Phase-Change Materials , 2019, Physical Review Applied.

[54]  Sergey I. Bozhevolnyi,et al.  Dynamic Metasurfaces Using Phase‐Change Chalcogenides , 2019, Advanced Optical Materials.

[55]  Joel M. Hensley,et al.  On the Optical Properties of Thin‐Film Vanadium Dioxide from the Visible to the Far Infrared , 2019, Annalen der Physik.

[56]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[57]  Weifeng Zhang,et al.  Photonic integrated field-programmable disk array signal processor , 2020, Nature Communications.

[58]  Nicholas J. Dinsdale,et al.  Ion Implantation of Germanium Into Silicon for Critical Coupling Control of Racetrack Resonators , 2020, Journal of Lightwave Technology.

[59]  M. Wuttig,et al.  All‐Dielectric Programmable Huygens' Metasurfaces , 2020, Advanced Functional Materials.

[60]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.