The Gustatory System of Lampreys
暂无分享,去创建一个
[1] R. Anadón,et al. The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain , 2010, Neuroscience.
[2] R. Anadón,et al. New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities , 2010, Neuroscience.
[3] S. Roper,et al. Autocrine and Paracrine Roles for ATP and Serotonin in Mouse Taste Buds , 2009, The Journal of Neuroscience.
[4] R. Anadón,et al. Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys , 2009, The Journal of comparative neurology.
[5] Kazuo Inoue,et al. Colocalization of GPR120 with phospholipase-Cβ2 and α-gustducin in the taste bud cells in mice , 2009, Neuroscience Letters.
[6] R. Anadón,et al. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: Presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi‐ciliated cells of the earliest vertebrates , 2008, The Journal of comparative neurology.
[7] R. Anadón,et al. Early Development of the Cranial Nerves in a Primitive Vertebrate, the Sea Lamprey, Petromyzon Marinus L. , 2008 .
[8] Tao Huang,et al. Role of the lateral hypothalamus in modulating responses of parabrachial gustatory neurons in the rat , 2008, Brain Research Bulletin.
[9] Agustín González,et al. Distribution of adrenomedullin-like immunoreactivity in the brain of the adult sea lamprey , 2008, Brain Research Bulletin.
[10] R. Anadón,et al. The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey , 2008, Brain Research Bulletin.
[11] Shigehiro Kuraku,et al. Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.
[12] T. Finger. Evolution of Taste , 2007 .
[13] Y. Mori,et al. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. , 2006, Biochimica et biophysica acta.
[14] G. Paxinos,et al. Development of the human nucleus of the solitary tract: A cyto- and chemoarchitectural study , 2006, Autonomic Neuroscience.
[15] M. Pombal,et al. Distribution of neuropeptide FF-like immunoreactive structures in the lamprey central nervous system and its relation to catecholaminergic neuronal structures , 2006, Peptides.
[16] H. Koyama. Organization of the Sensory and Motor Nuclei of the Glossopharyngeal and Vagal Nerves in Lampreys , 2005, Zoological science.
[17] R. Northcutt,et al. Taste bud development in the channel catfish , 2005, The Journal of comparative neurology.
[18] R. Anadón,et al. Calretinin immunoreactivity in taste buds and afferent fibers of the grey mullet Chelon labrosus , 2005, Brain Research.
[19] S. Homma. Velar motoneurons of lamprey larvae , 1975, Journal of comparative physiology.
[20] J. V. Carus,et al. Handbuch der Zoologie , 2005, Anzeiger für Schädlingskunde.
[21] R. Dubuc,et al. Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus , 2004, The Journal of comparative neurology.
[22] R. Northcutt,et al. Taste Buds: Development and Evolution , 2004, Brain, Behavior and Evolution.
[23] E. Lane,et al. Fine structure of Merkel cells in lampreys , 2004, Cell and Tissue Research.
[24] R. Dubuc,et al. Anatomical and physiological study of respiratory motor innervation in lampreys , 2003, Neuroscience.
[25] N. Moreno,et al. Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians , 2003, Journal of Chemical Neuroanatomy.
[26] Jacqueline Pierre-Simons,et al. Development of tyrosine hydroxylase‐immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis , 2002, The Journal of comparative neurology.
[27] J. C. Kinnamon,et al. “Type III” cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuron‐specific enolase, protein gene product 9.5, and serotonin , 2001, The Journal of comparative neurology.
[28] K. Ashwell,et al. Development of the cyto- and chemoarchitectural organization of the rat nucleus of the solitary tract , 2001, Anatomy and Embryology.
[29] M. Muñoz,et al. Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog , 2001, Journal of Chemical Neuroanatomy.
[30] M. Rosenblatt,et al. CGRP-RCP, a Novel Protein Required for Signal Transduction at Calcitonin Gene-related Peptide and Adrenomedullin Receptors* , 2000, The Journal of Biological Chemistry.
[31] C. B. Braun. Schreiner organs: A new craniate chemosensory modality in hagfishes , 1998, The Journal of comparative neurology.
[32] R. Anadón,et al. Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: A retrograde horseradish peroxidase labeling study , 1997, The Journal of comparative neurology.
[33] R. Northcutt,et al. Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. , 1997, Development.
[34] R. Delay,et al. Merkel‐like basal cells in Necturus taste buds contain serotonin , 1993, The Journal of comparative neurology.
[35] K. Reutter. Morphology of vertebrate taste organs and their nerve supply , 1993 .
[36] A. Aarnisalo,et al. Neuropeptide FF is colocalized with catecholamine-synthesizing enzymes in neurons of the nucleus of the solitary tract , 1992, Neuroscience Letters.
[37] P. Panula,et al. Immunohistochemical distribution and partial characterization of FLFQPQRFamidelike peptides in the central nervous system of rats , 1989, The Journal of comparative neurology.
[38] R. Delay,et al. Ultrastructure of taste cells and synapses in the mudpuppy Necturus maculosus , 1988, The Journal of comparative neurology.
[39] C. Rovainen,et al. Feeding behavior by parasitic phase lampreys, Ichthyomyzon unicuspis. , 1988, Brain, Behavior and Evolution.
[40] K. Toyoshima,et al. Monoamine-containing basal cells in the taste buds of the newt Triturus pyrrhogaster. , 1987, Archives of oral biology.
[41] G. Piperno,et al. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms , 1985, The Journal of cell biology.
[42] E. Baatrup. Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch) , 1985 .
[43] E. Baatrup. Terminal Buds in the Branchial Tube of the Brook Lamprey (Lampetra planeri (Bloch))—Putative Respiratory Monitors , 1983 .
[44] E. Baatrup. Ciliated Receptors in the Pharyngeal Terminal Buds of Larval Lampetra planeri (Bloch) (Cyclostomata) , 1983 .
[45] E. Lane,et al. Sensory structures at the surface of fish skin: I. Putative chemoreceptors , 1982 .
[46] J. Mallatt. The suspension feeding mechanism of the larval lamprey Petromyzon marinus , 1981 .
[47] J. Mallatt,et al. Feeding of Larval Lamprey , 1980 .
[48] H. Adam,et al. Transmissions‐ und rasterelektronen‐mikroskopische Untersuchung an den Sinnesknospen der Tentakeln von Myxine glutinosa L. (Cyclostomata) , 1979 .
[49] J. Mallatt. Surface morphology and functions of pharyngeal structures in the larval lamprey Petromyzon marinus , 1979, Journal of morphology.
[50] K. E. Schreiner. Zur Kenntnis der Zellgranula , 1916 .
[51] H. Schauinsland. Beiträge zur Entwicklungsgeschichte und Anatomie der Wirbeltiere. Von Prof. Dr. H. Schauinsland. Unter suchungen ausgeführt mit unterstützung der Königl. Akademie der Wissenschaften zu Berlin sowie des Städtischen Museums für Natur-, Völker- und Handelskunde in Brem , 1903 .
[52] J. Schaffer. Ueber das Epithel des Kiemendarms von Ammocoetes nebst Bemerkungen über intraepitheliale Drüsen , 1895 .
[53] A. Schneider. Beiträge zur vergleichenden Anatomie und Entwicklungsgeschichte der Wirbelthiere. , 1879 .
[54] D. Hume,et al. ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves , 2022 .