The Gustatory System of Lampreys

The present is a review of the gustatory system of lampreys, which are representative of the earliest vertebrates. They are the oldest extant vertebrates that possess taste buds. Because of the phylogenetic position of lampreys, the study of their gustatory system will provide important information to help understand the early evolution of this system in vertebrates. The taste buds of larval lampreys, which are papillae located on the first six pairs of gill arches facing the water current, respond to classical taste substances. They consist of two types of tall differentiated cells, serotonergic biciliated taste receptors (‘light’ cells) and microvillous sustentacular cells (‘dark cells’). The taste buds also contain basal proliferative cells. Afferent gustatory fibers of the glossopharyngeal and vagal nerves innervate the taste buds of lampreys and contact the basal surface of the biciliated cells without entering the bud. Central processes of the glossopharyngeal and vagal cranial nerves terminate in a caudal rhombencephalic region that may correspond to the nucleus of the solitary tract of gnathostomes. To date, most studies in lampreys have focused on characterizing taste buds; future research should focus on the central processing of the gustatory information. Here we will review the current knowledge about the gustatory system of lampreys to provide a basis for establishing the direction of further studies of this chemosensory system.

[1]  R. Anadón,et al.  The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain , 2010, Neuroscience.

[2]  R. Anadón,et al.  New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities , 2010, Neuroscience.

[3]  S. Roper,et al.  Autocrine and Paracrine Roles for ATP and Serotonin in Mouse Taste Buds , 2009, The Journal of Neuroscience.

[4]  R. Anadón,et al.  Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys , 2009, The Journal of comparative neurology.

[5]  Kazuo Inoue,et al.  Colocalization of GPR120 with phospholipase-Cβ2 and α-gustducin in the taste bud cells in mice , 2009, Neuroscience Letters.

[6]  R. Anadón,et al.  Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: Presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi‐ciliated cells of the earliest vertebrates , 2008, The Journal of comparative neurology.

[7]  R. Anadón,et al.  Early Development of the Cranial Nerves in a Primitive Vertebrate, the Sea Lamprey, Petromyzon Marinus L. , 2008 .

[8]  Tao Huang,et al.  Role of the lateral hypothalamus in modulating responses of parabrachial gustatory neurons in the rat , 2008, Brain Research Bulletin.

[9]  Agustín González,et al.  Distribution of adrenomedullin-like immunoreactivity in the brain of the adult sea lamprey , 2008, Brain Research Bulletin.

[10]  R. Anadón,et al.  The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey , 2008, Brain Research Bulletin.

[11]  Shigehiro Kuraku,et al.  Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.

[12]  T. Finger Evolution of Taste , 2007 .

[13]  Y. Mori,et al.  Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. , 2006, Biochimica et biophysica acta.

[14]  G. Paxinos,et al.  Development of the human nucleus of the solitary tract: A cyto- and chemoarchitectural study , 2006, Autonomic Neuroscience.

[15]  M. Pombal,et al.  Distribution of neuropeptide FF-like immunoreactive structures in the lamprey central nervous system and its relation to catecholaminergic neuronal structures , 2006, Peptides.

[16]  H. Koyama Organization of the Sensory and Motor Nuclei of the Glossopharyngeal and Vagal Nerves in Lampreys , 2005, Zoological science.

[17]  R. Northcutt,et al.  Taste bud development in the channel catfish , 2005, The Journal of comparative neurology.

[18]  R. Anadón,et al.  Calretinin immunoreactivity in taste buds and afferent fibers of the grey mullet Chelon labrosus , 2005, Brain Research.

[19]  S. Homma Velar motoneurons of lamprey larvae , 1975, Journal of comparative physiology.

[20]  J. V. Carus,et al.  Handbuch der Zoologie , 2005, Anzeiger für Schädlingskunde.

[21]  R. Dubuc,et al.  Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus , 2004, The Journal of comparative neurology.

[22]  R. Northcutt,et al.  Taste Buds: Development and Evolution , 2004, Brain, Behavior and Evolution.

[23]  E. Lane,et al.  Fine structure of Merkel cells in lampreys , 2004, Cell and Tissue Research.

[24]  R. Dubuc,et al.  Anatomical and physiological study of respiratory motor innervation in lampreys , 2003, Neuroscience.

[25]  N. Moreno,et al.  Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians , 2003, Journal of Chemical Neuroanatomy.

[26]  Jacqueline Pierre-Simons,et al.  Development of tyrosine hydroxylase‐immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis , 2002, The Journal of comparative neurology.

[27]  J. C. Kinnamon,et al.  “Type III” cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuron‐specific enolase, protein gene product 9.5, and serotonin , 2001, The Journal of comparative neurology.

[28]  K. Ashwell,et al.  Development of the cyto- and chemoarchitectural organization of the rat nucleus of the solitary tract , 2001, Anatomy and Embryology.

[29]  M. Muñoz,et al.  Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog , 2001, Journal of Chemical Neuroanatomy.

[30]  M. Rosenblatt,et al.  CGRP-RCP, a Novel Protein Required for Signal Transduction at Calcitonin Gene-related Peptide and Adrenomedullin Receptors* , 2000, The Journal of Biological Chemistry.

[31]  C. B. Braun Schreiner organs: A new craniate chemosensory modality in hagfishes , 1998, The Journal of comparative neurology.

[32]  R. Anadón,et al.  Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: A retrograde horseradish peroxidase labeling study , 1997, The Journal of comparative neurology.

[33]  R. Northcutt,et al.  Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. , 1997, Development.

[34]  R. Delay,et al.  Merkel‐like basal cells in Necturus taste buds contain serotonin , 1993, The Journal of comparative neurology.

[35]  K. Reutter Morphology of vertebrate taste organs and their nerve supply , 1993 .

[36]  A. Aarnisalo,et al.  Neuropeptide FF is colocalized with catecholamine-synthesizing enzymes in neurons of the nucleus of the solitary tract , 1992, Neuroscience Letters.

[37]  P. Panula,et al.  Immunohistochemical distribution and partial characterization of FLFQPQRFamidelike peptides in the central nervous system of rats , 1989, The Journal of comparative neurology.

[38]  R. Delay,et al.  Ultrastructure of taste cells and synapses in the mudpuppy Necturus maculosus , 1988, The Journal of comparative neurology.

[39]  C. Rovainen,et al.  Feeding behavior by parasitic phase lampreys, Ichthyomyzon unicuspis. , 1988, Brain, Behavior and Evolution.

[40]  K. Toyoshima,et al.  Monoamine-containing basal cells in the taste buds of the newt Triturus pyrrhogaster. , 1987, Archives of oral biology.

[41]  G. Piperno,et al.  Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms , 1985, The Journal of cell biology.

[42]  E. Baatrup Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch) , 1985 .

[43]  E. Baatrup Terminal Buds in the Branchial Tube of the Brook Lamprey (Lampetra planeri (Bloch))—Putative Respiratory Monitors , 1983 .

[44]  E. Baatrup Ciliated Receptors in the Pharyngeal Terminal Buds of Larval Lampetra planeri (Bloch) (Cyclostomata) , 1983 .

[45]  E. Lane,et al.  Sensory structures at the surface of fish skin: I. Putative chemoreceptors , 1982 .

[46]  J. Mallatt The suspension feeding mechanism of the larval lamprey Petromyzon marinus , 1981 .

[47]  J. Mallatt,et al.  Feeding of Larval Lamprey , 1980 .

[48]  H. Adam,et al.  Transmissions‐ und rasterelektronen‐mikroskopische Untersuchung an den Sinnesknospen der Tentakeln von Myxine glutinosa L. (Cyclostomata) , 1979 .

[49]  J. Mallatt Surface morphology and functions of pharyngeal structures in the larval lamprey Petromyzon marinus , 1979, Journal of morphology.

[50]  K. E. Schreiner Zur Kenntnis der Zellgranula , 1916 .

[51]  H. Schauinsland Beiträge zur Entwicklungsgeschichte und Anatomie der Wirbeltiere. Von Prof. Dr. H. Schauinsland. Unter suchungen ausgeführt mit unterstützung der Königl. Akademie der Wissenschaften zu Berlin sowie des Städtischen Museums für Natur-, Völker- und Handelskunde in Brem , 1903 .

[52]  J. Schaffer Ueber das Epithel des Kiemendarms von Ammocoetes nebst Bemerkungen über intraepitheliale Drüsen , 1895 .

[53]  A. Schneider Beiträge zur vergleichenden Anatomie und Entwicklungsgeschichte der Wirbelthiere. , 1879 .

[54]  D. Hume,et al.  ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves , 2022 .