Plasmas as metamaterials: a review

When we form a structure of plasmas distributed in a certain space in which electromagnetic waves propagate, such a plasma structure serves as a different medium from a homogeneous bulk plasma. We can also enhance or generate novel functions of the plasmas when we add other structural materials such as functional components. That is to say, when we estimate such a medium from the material properties such as permittivity, permeability and conductivity, it shows extraordinary and/or functional effects that arise from the synthesis of the structure. We call such an artificial material a plasma metamaterial. In this review, starting from a fundamental understanding of electromagnetic wave propagation in and around plasmas, we review the new functions of plasmas as metamaterials, including a photonic-crystal-like behavior, a negative refractive index state and a nonlinear bifurcated electric response, by describing specific plasma structures. In addition, we survey some specific applications of such media and predict a feasible scientific expansion of this field in the near future.

[1]  Lifang Dong,et al.  A Potential Tunable Plasma Photonic Crystal: Applications of Atmospheric Patterned Gas Discharge , 2009, IEEE Transactions on Plasma Science.

[2]  Y. Kishimoto,et al.  Diagnostics of microdischarge-integrated plasma sources for display and materials processing , 2005 .

[3]  K. Sakoda,et al.  Photonic bands of metallic systems. II. Features of surface plasmon polaritons , 2001 .

[4]  Steven A Cummer,et al.  Compact dielectric particles as a building block for low-loss magnetic metamaterials. , 2008, Physical review letters.

[5]  O. Pigaglio,et al.  Reconfigurable Ebg at 18 GHz using Perimeter Defects , 2009 .

[6]  Lifang Dong,et al.  Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge , 2010 .

[7]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[8]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Dae-Sung Lee,et al.  Microplasma-Induced Deformation of an Anomalous Response Spectrum of Electromagnetic Waves Propagating along Periodically Perforated Metal Plates , 2009 .

[10]  K. Tachibana,et al.  Microplasma Array Serving as Photonic Crystals and Plasmon Chains , 2009 .

[11]  K. Tachibana,et al.  Interaction and control of millimetre-waves with microplasma arrays , 2005 .

[12]  Hai‐feng Zhang,et al.  A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma , 2010 .

[13]  Schultz,et al.  Microwave propagation in two-dimensional dielectric lattices. , 1991, Physical review letters.

[14]  Z. Sheng,et al.  Chirped pulse compression in nonuniform plasma Bragg gratings , 2005 .

[15]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[16]  Z. Sheng,et al.  Plasma density gratings induced by intersecting laser pulses in underdense plasmas , 2003 .

[17]  Shaobin Liu,et al.  FINITE-DIFFERENCE TIME-DOMAIN ANALYSIS OF UNMAGNETIZED PLASMA PHOTONIC CRYSTALS , 2007 .

[18]  K. Schoenbach,et al.  Self-organization in cathode boundary layer microdischarges , 2004 .

[19]  M. Keidar,et al.  Temporary-resolved measurement of electron density in small atmospheric plasmas , 2010 .

[20]  K. Tachibana,et al.  Plasma Photonic Crystals in Two‐Dimensional Arrays of Microplasmas , 2007 .

[21]  I. Gabitov,et al.  Optical bistability in a nonlinear optical coupler with a negative index channel. , 2007, Physical review letters.

[22]  Kunihide Tachibana,et al.  Observation of self-organized filaments in a dielectric barrier discharge of Ar gas , 2003 .

[23]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[24]  M. Yu,et al.  Bandgap characteristics of one-dimensional plasma photonic crystal , 2009 .

[25]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[26]  K. Tachibana,et al.  Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves , 2007 .

[27]  B. Guo Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal , 2009 .

[28]  E. A. Kuznetsov,et al.  Solitons and collapses: two evolution scenarios of nonlinear wave systems , 2012 .

[29]  H. Hojo,et al.  Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals , 2004 .

[30]  T. Nakanishi,et al.  No-Reflection Phenomena for Chiral Media , 2011 .

[31]  A. W. Trivelpiece,et al.  Space Charge Waves in Cylindrical Plasma Columns , 1959 .

[32]  Toshihiko Baba,et al.  Roadmap on Photonic Crystals , 2003 .

[33]  Yuri S. Kivshar,et al.  Tunable transmission and bistability in left-handed band-gap structures , 2004 .

[34]  C. Yuan,et al.  Reflection Properties of Electromagnetic Wave in a Bounded Plasma Slab , 2010, IEEE Transactions on Plasma Science.

[35]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[36]  K. Tachibana,et al.  Experimental and numerical verification of microplasma assembly for novel electromagnetic media , 2010 .

[37]  K. Tachibana,et al.  Properties of Electromagnetic Wave Propagation Emerging in 2-D Periodic Plasma Structures , 2007, IEEE Transactions on Plasma Science.

[38]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[39]  K. Tachibana Microplasma generation in artificial media and its potential applications , 2010 .

[40]  O. Sakai Transition between positive and negative permittivity in field-dependent metamaterial , 2011 .

[41]  E. Yablonovitch How to Be Truly Photonic , 2000, Science.

[42]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[43]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[44]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[45]  James P. Rybak,et al.  Progress in Reentry Communications , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Robertson,et al.  Measurement of photonic band structure in a two-dimensional periodic dielectric array. , 1992, Physical review letters.

[47]  On the cubic zero-order solution of electromagnetic waves. I. Periodic slabs with lossy plasmas , 2010 .

[48]  Total absorption of an electromagnetic wave by an overdense plasma. , 2005, Physical review letters.

[49]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[50]  J. Boeuf,et al.  Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect , 2010 .

[51]  K. Tachibana,et al.  Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges , 2007 .

[52]  K. Tachibana,et al.  Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure , 2005 .

[53]  Dae-Sung Lee,et al.  Characteristics of metamaterials composed of microplasma arrays , 2007 .

[54]  S. Kuo,et al.  Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma , 1996 .

[55]  Kunihide Tachibana,et al.  Current status of microplasma research , 2006 .

[56]  Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. , 2010, Optics letters.

[57]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[58]  K. Tachibana,et al.  Measurement of electron density in a microdischarge-integrated device operated in nitrogen at atmospheric pressure using a millimetre-wave transmission method , 2010 .

[59]  Yafeng He,et al.  Square superlattice pattern in dielectric barrier discharge. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  O. Sakai Propagation of Electromagnetic Waves in and around Plasmas , 2011 .

[61]  S. S. Bedair,et al.  and Simple Approximate Analytic Formulas for Calculating the Parameters of Supported Coplanar Waveguides for (M)MIC ' s , 1992 .

[62]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[63]  K. Tachibana,et al.  Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas , 2005 .

[64]  T. Shirafuji,et al.  Submillimeter dielectric barrier discharges at atmospheric pressure: edge effect , 2005, IEEE Transactions on Plasma Science.

[65]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[66]  K. Tachibana,et al.  Experimental Verification of Complex Dispersion Relation in Lossy Photonic Crystals , 2008 .

[67]  Davide Mariotti,et al.  Microplasmas for nanomaterials synthesis , 2010 .

[68]  Lifang Dong,et al.  Two-dimensional plasma photonic crystals in dielectric barrier discharge , 2010 .

[69]  Alexei A. Maradudin,et al.  Two-dimensional photonic band structures , 1991 .

[70]  潮田 資勝 F. Forstmann and R. R. Gerhardts: Metal Optics near the Plasma Frequency, Springer-Verlag, 1986, viii+132ページ, 7,920円 (Springer Tracats in Modern Physics, Vol. 109). , 1987 .

[71]  Alexei A. Maradudin,et al.  Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation , 1997 .

[72]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[73]  K. Tachibana,et al.  Microplasma array with metamaterial effects , 2010 .

[74]  Jeffrey Hopwood,et al.  Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency , 2005 .

[75]  K. Tachibana,et al.  Negative refractive index designed in a periodic composite of lossy microplasmas and microresonators , 2010 .

[76]  Ziqiang Yang,et al.  Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals , 2010 .

[77]  Plasma-based localized defect for switchable coupling applications , 2011 .

[78]  I. Awai Artificial Dielectric Resonators for Miniaturized Filters , 2008, IEEE Microwave Magazine.

[79]  András Tompos,et al.  Concluding Remarks and Future Perspectives , 2012 .

[80]  Müller Kg,et al.  Structures at the electrodes of gas discharges. , 1988 .

[81]  R. Vidmar,et al.  On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers , 1990 .

[82]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[83]  J. Walsh,et al.  Spatially extended atmospheric plasma arrays , 2010 .