Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry

Abstract Matter-wave interferometry is a direct test of the quantum superposition principle for massive systems, and of collapse models. Here we show that the bounds placed by matter-wave interferometry depend weakly on the details of the collapse mechanism. Specifically, we compute the bounds on the CSL model and its variants, provided by the KDTL interferometry experiment of Arndt's group (Eibenberger et al. (2013) [3] ), which currently holds the record of largest mass in interferometry. We also show that the CSL family of models emerges naturally by considering a minimal set of assumptions. In particular, we construct the dynamical map for the colored and dissipative Continuous Spontaneous Localization (cdCSL) model, which reduces to the CSL model and variants in the appropriate limits. In addition, we discuss the measure of macroscopicity based on the cdCSL model.

[1]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[2]  A. Bassi,et al.  General Galilei Covariant Gaussian Maps. , 2017, Physical review letters.

[3]  S. Gerlich,et al.  Theory and experimental verification of Kapitza–Dirac–Talbot–Lau interferometry , 2009, 0902.0234.

[4]  G. Milburn,et al.  Macroscopic Quantum Resonators (MAQRO): 2015 update , 2015, 1503.02640.

[5]  Alexander Semenovich Holevo,et al.  Covariant quantum Markovian evolutions , 1996 .

[6]  Alexander Semenovich Holevo,et al.  A note on covariant dynamical semigroups , 1993 .

[7]  K. Hornberger,et al.  Macroscopicity of mechanical quantum superposition states. , 2012, Physical review letters.

[8]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[9]  G. Ghirardi,et al.  Describing the macroscopic world: Closing the circle within the dynamical reduction program , 1994 .

[10]  Margarita A. Man’ko,et al.  Journal of Optics B: Quantum and Semiclassical Optics , 2003 .

[11]  GianCarlo Ghirardi,et al.  Dynamical reduction models , 2003 .

[12]  S. Nimmrichter Macroscopic Matter Wave Interferometry , 2014 .

[13]  B. Vacchini,et al.  Dissipative extension of the Ghirardi-Rimini-Weber model , 2014, 1408.6115.

[14]  Savage,et al.  Damping of quantum coherence: The master-equation approach. , 1985, Physical review. A, General physics.

[15]  Markus Arndt,et al.  Testing spontaneous localization theories with matter-wave interferometry , 2011, 1103.1236.

[16]  K. Hammerer,et al.  Optomechanical sensing of spontaneous wave-function collapse. , 2014, Physical review letters.

[17]  A. Bassi,et al.  Breaking quantum linearity: Constraints from human perception and cosmological implications , 2010, 1011.3767.

[18]  B. Vacchini,et al.  Quantum master equation for collisional dynamics of massive particles with internal degrees of freedom , 2010, 1003.0998.

[19]  J. Sipe,et al.  Theory of decoherence in a matter wave Talbot-Lau interferometer (18 pages) , 2004, quant-ph/0407245.

[20]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[21]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[22]  A. Bassi,et al.  Experimental bounds on collapse models from gravitational wave detectors , 2016, 1606.04581.

[23]  S. Adler Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  Stephen L. Adler,et al.  Lower and upper bounds on CSL parameters from latent image formation and IGM heating , 2006, quant-ph/0605072.

[26]  L. Diósi Testing spontaneous wave-function collapse models on classical mechanical oscillators. , 2014, Physical review letters.

[27]  A. Holevo On conservativity of covariant dynamical semigroups , 1993 .

[28]  S. Adler,et al.  Collapse models with non-white noises: II. Particle-density coupled noises , 2008, 0807.2846.

[29]  R. Tumulka,et al.  Parameter diagrams of the GRW and CSL theories of wavefunction collapse , 2011, 1109.6579.

[30]  Angelo Bassi,et al.  Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.

[31]  S. Donadi,et al.  Bounds on collapse models from cold-atom experiments , 2016, 1605.01891.

[32]  B. C. Hiesmayr,et al.  X-rays help to unfuzzy the concept of measurement , 2015, 1502.05961.

[33]  A. Holevo On translation-covariant quantum Markov equations , 1995 .

[34]  B. Vacchini,et al.  Quantum linear Boltzmann equation , 2009, 0904.3911.

[35]  A. Zeilinger,et al.  Concepts for near-field interferometers with large molecules , 2003 .

[36]  C. Jönsson,et al.  Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .

[37]  Angelo Bassi,et al.  Dissipative Continuous Spontaneous Localization (CSL) model , 2014, Scientific Reports.

[38]  S. Donadi,et al.  On the spontaneous emission of electromagnetic radiation in the CSL model , 2013, 1307.1021.

[39]  Real-time single-molecule imaging of quantum interference. , 2012, Nature nanotechnology.

[40]  M. Bahrami,et al.  Testing the quantum superposition principle in the frequency domain , 2013, 1309.5889.

[41]  T. Oosterkamp,et al.  Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers. , 2015, Physical review letters.

[42]  A. F. Foundations of Physics , 1936, Nature.

[43]  S. Adler Vacuum birefringence in a rotating magnetic field , 2006, hep-ph/0611267.

[44]  M. Paternostro,et al.  Proposal for a noninterferometric test of collapse models in optomechanical systems , 2014, 1402.5421.

[45]  L. Diósi,et al.  General non-markovian structure of Gaussian master and stochastic Schrödinger equations. , 2014, Physical review letters.

[46]  S. Adler,et al.  Collapse models with non-white noises , 2007, 0708.3624.

[47]  Pearle,et al.  Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[48]  Pearle Ways to describe dynamical state-vector reduction. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[49]  Marcel Mayor,et al.  Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. , 2013, Physical chemistry chemical physics : PCCP.