Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry
暂无分享,去创建一个
[1] Weber,et al. Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.
[2] A. Bassi,et al. General Galilei Covariant Gaussian Maps. , 2017, Physical review letters.
[3] S. Gerlich,et al. Theory and experimental verification of Kapitza–Dirac–Talbot–Lau interferometry , 2009, 0902.0234.
[4] G. Milburn,et al. Macroscopic Quantum Resonators (MAQRO): 2015 update , 2015, 1503.02640.
[5] Alexander Semenovich Holevo,et al. Covariant quantum Markovian evolutions , 1996 .
[6] Alexander Semenovich Holevo,et al. A note on covariant dynamical semigroups , 1993 .
[7] K. Hornberger,et al. Macroscopicity of mechanical quantum superposition states. , 2012, Physical review letters.
[8] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.
[9] G. Ghirardi,et al. Describing the macroscopic world: Closing the circle within the dynamical reduction program , 1994 .
[10] Margarita A. Man’ko,et al. Journal of Optics B: Quantum and Semiclassical Optics , 2003 .
[11] GianCarlo Ghirardi,et al. Dynamical reduction models , 2003 .
[12] S. Nimmrichter. Macroscopic Matter Wave Interferometry , 2014 .
[13] B. Vacchini,et al. Dissipative extension of the Ghirardi-Rimini-Weber model , 2014, 1408.6115.
[14] Savage,et al. Damping of quantum coherence: The master-equation approach. , 1985, Physical review. A, General physics.
[15] Markus Arndt,et al. Testing spontaneous localization theories with matter-wave interferometry , 2011, 1103.1236.
[16] K. Hammerer,et al. Optomechanical sensing of spontaneous wave-function collapse. , 2014, Physical review letters.
[17] A. Bassi,et al. Breaking quantum linearity: Constraints from human perception and cosmological implications , 2010, 1011.3767.
[18] B. Vacchini,et al. Quantum master equation for collisional dynamics of massive particles with internal degrees of freedom , 2010, 1003.0998.
[19] J. Sipe,et al. Theory of decoherence in a matter wave Talbot-Lau interferometer (18 pages) , 2004, quant-ph/0407245.
[20] Tsvi Piran,et al. Reviews of Modern Physics , 2002 .
[21] R Kaltenbaek,et al. Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.
[22] A. Bassi,et al. Experimental bounds on collapse models from gravitational wave detectors , 2016, 1606.04581.
[23] S. Adler. Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .
[24] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[25] Stephen L. Adler,et al. Lower and upper bounds on CSL parameters from latent image formation and IGM heating , 2006, quant-ph/0605072.
[26] L. Diósi. Testing spontaneous wave-function collapse models on classical mechanical oscillators. , 2014, Physical review letters.
[27] A. Holevo. On conservativity of covariant dynamical semigroups , 1993 .
[28] S. Adler,et al. Collapse models with non-white noises: II. Particle-density coupled noises , 2008, 0807.2846.
[29] R. Tumulka,et al. Parameter diagrams of the GRW and CSL theories of wavefunction collapse , 2011, 1109.6579.
[30] Angelo Bassi,et al. Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.
[31] S. Donadi,et al. Bounds on collapse models from cold-atom experiments , 2016, 1605.01891.
[32] B. C. Hiesmayr,et al. X-rays help to unfuzzy the concept of measurement , 2015, 1502.05961.
[33] A. Holevo. On translation-covariant quantum Markov equations , 1995 .
[34] B. Vacchini,et al. Quantum linear Boltzmann equation , 2009, 0904.3911.
[35] A. Zeilinger,et al. Concepts for near-field interferometers with large molecules , 2003 .
[36] C. Jönsson,et al. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .
[37] Angelo Bassi,et al. Dissipative Continuous Spontaneous Localization (CSL) model , 2014, Scientific Reports.
[38] S. Donadi,et al. On the spontaneous emission of electromagnetic radiation in the CSL model , 2013, 1307.1021.
[39] Real-time single-molecule imaging of quantum interference. , 2012, Nature nanotechnology.
[40] M. Bahrami,et al. Testing the quantum superposition principle in the frequency domain , 2013, 1309.5889.
[41] T. Oosterkamp,et al. Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers. , 2015, Physical review letters.
[42] A. F.. Foundations of Physics , 1936, Nature.
[43] S. Adler. Vacuum birefringence in a rotating magnetic field , 2006, hep-ph/0611267.
[44] M. Paternostro,et al. Proposal for a noninterferometric test of collapse models in optomechanical systems , 2014, 1402.5421.
[45] L. Diósi,et al. General non-markovian structure of Gaussian master and stochastic Schrödinger equations. , 2014, Physical review letters.
[46] S. Adler,et al. Collapse models with non-white noises , 2007, 0708.3624.
[47] Pearle,et al. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[48] Pearle. Ways to describe dynamical state-vector reduction. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[49] Marcel Mayor,et al. Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. , 2013, Physical chemistry chemical physics : PCCP.