Nanomedicines for back of the eye drug delivery, gene delivery, and imaging

Treatment and management of diseases of the posterior segment of the eye such as diabetic retinopathy, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. Nanomedicines, products of nanotechnology, having at least one dimension in the nanoscale include nanoparticles, micelles, nanotubes, and dendrimers, with and without targeting ligands. Nanomedicines are making a significant impact in the fields of ocular drug delivery, gene delivery, and imaging, the focus of this review. Key applications of nanotechnology discussed in this review include a) bioadhesive nanomedicines; b) functionalized nanomedicines that enhance target recognition and/or cell entry; c) nanomedicines capable of controlled release of the payload; d) nanomedicines capable of enhancing gene transfection and duration of transfection; f) nanomedicines responsive to stimuli including light, heat, ultrasound, electrical signals, pH, and oxidative stress; g) diversely sized and colored nanoparticles for imaging, and h) nanowires for retinal prostheses. Additionally, nanofabricated delivery systems including implants, films, microparticles, and nanoparticles are described. Although the above nanomedicines may be administered by various routes including topical, intravitreal, intravenous, transscleral, suprachoroidal, and subretinal routes, each nanomedicine should be tailored for the disease, drug, and site of administration. In addition to the nature of materials used in nanomedicine design, depending on the site of nanomedicine administration, clearance and toxicity are expected to differ.

[1]  Hu Yang,et al.  Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[2]  Gaurav Goel,et al.  Ophthalmic Applications of Nanotechnology , 2008 .

[3]  R. Gurny,et al.  Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. , 2002, Investigative ophthalmology & visual science.

[4]  M. Akashi,et al.  pH-Dependent Disruption of Erythrocyte Membrane by Amphiphilic Poly(amino acid) Nanoparticles , 2010, Journal of biomaterials science. Polymer edition.

[5]  P. Tyagi,et al.  Comparison of Suprachoroidal Drug Delivery with Subconjunctival and Intravitreal Routes Using Noninvasive Fluorophotometry , 2012, PloS one.

[6]  R. Gurny,et al.  Pharmacokinetics and posterior segment biodistribution of ESBA105, an anti-TNF-alpha single-chain antibody, upon topical administration to the rabbit eye. , 2009, Investigative ophthalmology & visual science.

[7]  A. Ludwig,et al.  Optimisation of carbomer viscous eye drops: an in vitro experimental design approach using rheological techniques. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  R. Caldwell,et al.  Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. , 2003, The American journal of pathology.

[9]  J. V. van Meurs,et al.  Dexamethasone concentration in vitreous and serum after oral administration. , 1998, American journal of ophthalmology.

[10]  Mark G. Allen,et al.  Lack of pain associated with microfabricated microneedles. , 2001 .

[11]  Steven S. Vogel,et al.  Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[12]  W. Feuer,et al.  Anecortave acetate as single and adjuvant therapy in the treatment of retinal tumors of LH(BETA)T(AG) mice. , 2006, Investigative ophthalmology & visual science.

[13]  T. Maren,et al.  Permeability of human cornea and sclera to sulfonamide carbonic anhydrase inhibitors. , 1988, Archives of ophthalmology.

[14]  V. H. Lee,et al.  Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. , 1994, Investigative ophthalmology & visual science.

[15]  H. Junginger,et al.  N-trimethyl chitosan chloride as absorption enhancer in oral peptide drug delivery. Development and characterization of minitablet and granule formulations. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[16]  S. Jezequel,et al.  Binding of drugs to eye melanin is not predictive of ocular toxicity. , 1998, Regulatory toxicology and pharmacology : RTP.

[17]  Veli-Pekka Ranta,et al.  Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. , 2006, Advanced drug delivery reviews.

[18]  A. Rouvas,et al.  SAFETY OF REPEAT INTRAVITREAL INJECTIONS OF BEVACIZUMAB VERSUS RANIBIZUMAB: Our Experience After 2,000 Injections , 2009, Retina.

[19]  U. Kompella,et al.  Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. , 2006, Molecular vision.

[20]  Gert Cauwenberghs,et al.  Ultra-high photosensitivity silicon nanophotonics for retinal prosthesis: Electrical characteristics , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[21]  R. Lutz,et al.  Transscleral-RPE permeability of PEDF and ovalbumin proteins: implications for subconjunctival protein delivery. , 2005, Investigative ophthalmology & visual science.

[22]  A. Urtti,et al.  Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. , 2005, Investigative ophthalmology & visual science.

[23]  J. O'Brien,et al.  Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. , 2005, Ophthalmology.

[24]  Mark G. Allen,et al.  Polymer Microneedles for Controlled-Release Drug Delivery , 2006, Pharmaceutical Research.

[25]  H. Junginger,et al.  Oral drug absorption enhancement by chitosan and its derivatives. , 2001, Advanced drug delivery reviews.

[26]  Hyuncheol Kim,et al.  Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. , 2004, Investigative ophthalmology & visual science.

[27]  U. Kompella,et al.  Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. , 2005, European journal of pharmacology.

[28]  J. Putaux,et al.  Biodistribution of intravenously administered amphiphilic beta-cyclodextrin nanospheres. , 2007, International journal of pharmaceutics.

[29]  G. Kwon,et al.  Polymeric micelles for delivery of poorly water-soluble compounds. , 2003, Critical reviews in therapeutic drug carrier systems.

[30]  Mark R. Prausnitz,et al.  Suprachoroidal Drug Delivery to the Back of the Eye Using Hollow Microneedles , 2010, Pharmaceutical Research.

[31]  D. Wurster,et al.  Significance of melanin binding and metabolism in the activity of 5-acetoxyacetylimino-4-methyl-delta2-1,3,4,-thiadiazolin e-2-sulfonamide. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  Jung-Hwan Park,et al.  Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[33]  M. Thiel,et al.  Efficient intraocular penetration of topical anti-TNF-alpha single-chain antibody (ESBA105) to anterior and posterior segment without penetration enhancer. , 2009, Investigative ophthalmology & visual science.

[34]  J. D. Cameron,et al.  Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. , 2011, Investigative ophthalmology & visual science.

[35]  S. Davis,et al.  Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. , 1991, Biochemical and biophysical research communications.

[36]  U. Kompella,et al.  Retinal Delivery of Celecoxib Is Several-Fold Higher Following Subconjunctival Administration Compared to Systemic Administration , 2004, Pharmaceutical Research.

[37]  A. Lloyd,et al.  Ocular biomaterials and implants. , 2001, Biomaterials.

[38]  H. Junginger,et al.  Intestinal Absorption of Octreotide Using Trimethyl Chitosan Chloride: Studies in Pigs , 2001, Pharmaceutical Research.

[39]  J Wang,et al.  Lab-on-a-Cable for electrochemical monitoring of phenolic contaminants. , 2000, Analytical chemistry.

[40]  Jeffrey D Zahn,et al.  Microneedle Insertion Force Reduction Using Vibratory Actuation , 2004, Biomedical microdevices.

[41]  S. P. Srinivas,et al.  Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. , 2013, ACS nano.

[42]  P. Oh,et al.  Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. , 1994, The Journal of biological chemistry.

[43]  Ivana K. Kim,et al.  Diffusion of high molecular weight compounds through sclera. , 2000, Investigative ophthalmology & visual science.

[44]  M. Allen,et al.  Microfabricated microneedles: a novel approach to transdermal drug delivery. , 1998, Journal of pharmaceutical sciences.

[45]  Yang Hu,et al.  Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. , 2011, Investigative ophthalmology & visual science.

[46]  Lise Arleth,et al.  In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. , 2004, Journal of pharmaceutical sciences.

[47]  U. Kompella,et al.  Evidence for LHRH-Receptor Expression in Human Airway Epithelial (Calu-3) Cells and Its Role in the Transport of an LHRH Agonist , 2004, Pharmaceutical Research.

[48]  I. Wainer,et al.  Relevance of drug-melanin interactions to ocular pharmacology and toxicology. , 1994, Journal of ocular pharmacology.

[49]  Po-Ying Li,et al.  A passive MEMS drug delivery pump for treatment of ocular diseases , 2009, Biomedical microdevices.

[50]  N. Oku,et al.  Suppression of choroidal neovascularization by intravitreal injection of liposomal SU5416. , 2011, Archives of ophthalmology.

[51]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[52]  S. Lightman,et al.  Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis , 2001, Clinical & experimental ophthalmology.

[53]  T. Phillips,et al.  M cells in the follicle-associated epithelium of the rabbit conjunctiva preferentially bind and translocate latex beads. , 2005, Investigative Ophthalmology and Visual Science.

[54]  W. Trimmer,et al.  Genetic transformation of nematodes using arrays of micromechanical piercing structures. , 1995, BioTechniques.

[55]  A. Hoffman,et al.  Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression , 2004, Journal of biomaterials science. Polymer edition.

[56]  H. Honda,et al.  Transfer of gene to human retinal pigment epithelial cells using magnetite cationic liposomes , 2009, British Journal of Ophthalmology.

[57]  Kanji Takada,et al.  Feasibility of microneedles for percutaneous absorption of insulin. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[58]  D. S. Mcleod,et al.  Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[59]  U. Kompella,et al.  Functionalized nanosystems for targeted mitochondrial delivery. , 2012, Mitochondrion.

[60]  I. Kellaway,et al.  Precorneal Clearance of Mucoadhesive Microspheres from the Rabbit Eye , 1995, The Journal of pharmacy and pharmacology.

[61]  J. D. Cameron,et al.  Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. , 2006, American journal of ophthalmology.

[62]  R. Tripathi,et al.  Hydrogen peroxide damage to human corneal epithelial cells in vitro. Implications for contact lens disinfection systems. , 1989, Archives of ophthalmology.

[63]  B. Khoobehi,et al.  Liposome-bound cyclosporine: Clearance after intravitreal injection , 2004, International Ophthalmology.

[64]  P. Tyagi,et al.  RETRACTED: Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide. , 2012, International journal of pharmaceutics.

[65]  Xiuqing Gong,et al.  Design and Fabrication of Magnetically Functionalized Core/Shell Microspheres for Smart Drug Delivery , 2009 .

[66]  G. Bagby,et al.  Innate immunity and pulmonary host defense , 2000, Immunological reviews.

[67]  Yun Wang,et al.  Tropism and toxicity of adeno-associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. , 2008, Virology.

[68]  H. Ando,et al.  Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice. , 1995, Journal of pharmaceutical sciences.

[69]  A. Vila,et al.  Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. , 2006, Investigative ophthalmology & visual science.

[70]  U. Kompella,et al.  Gene delivery nanoparticles fabricated by supercritical fluid extraction of emulsions. , 2010, International journal of pharmaceutics.

[71]  Ying Chen,et al.  Nanoparticle-Mediated Expression of an Angiogenic Inhibitor Ameliorates Ischemia-Induced Retinal Neovascularization and Diabetes-Induced Retinal Vascular Leakage , 2009, Diabetes.

[72]  J. Cunha-Vaz,et al.  Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. , 1998, Experimental eye research.

[73]  Uday B. Kompella,et al.  Nanoparticle technology for drug delivery , 2006 .

[74]  H. Junginger,et al.  Effects of the Mucoadhesive Polymer Polycarbophil on the Intestinal Absorption of a Peptide Drug in the Rat , 1992, The Journal of pharmacy and pharmacology.

[75]  B. Khoobehi,et al.  Toxicity and clearance of a combination of liposome-encapsulated ganciclovir and trifluridine. , 1989, Retina.

[76]  H. Junginger,et al.  Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. , 2001, Journal of pharmaceutical sciences.

[77]  D. Welty,et al.  Formulation effects on ocular absorption of brimonidine in rabbit eyes. , 2002, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[78]  Gaurav Sahay,et al.  Endocytosis of nanomedicines. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[79]  F. de Monasterio,et al.  Preclinical evaluation of a novel episcleral cyclosporine implant for ocular graft-versus-host disease. , 2005, Investigative ophthalmology & visual science.

[80]  R. Samulski,et al.  Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. , 2002, Journal of the American Chemical Society.

[81]  Justine R. Smith,et al.  Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 , 2008, Nature.

[82]  C. Scholz Perspectives on: Materials Aspects for Retinal Prostheses , 2007 .

[83]  A. Bernkop‐Schnürch,et al.  Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[84]  B. Larsson,et al.  Pheomelanin as a binding site for drugs and chemicals. , 1999, Pigment cell research.

[85]  Uday B Kompella,et al.  Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. , 2003, European journal of pharmacology.

[86]  R. Scheinman,et al.  Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. , 2011, Nanomedicine.

[87]  Uday B Kompella,et al.  Recent advances in ophthalmic drug delivery. , 2010, Therapeutic delivery.

[88]  Takaya Miyano,et al.  Sugar Micro Needles as Transdermic Drug Delivery System , 2005, Biomedical microdevices.

[89]  U. Kompella,et al.  Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. , 2006, Investigative ophthalmology & visual science.

[90]  Y. Ogura,et al.  Effect of Particle Size of Polymeric Nanospheres on Intravitreal Kinetics , 2000, Ophthalmic Research.

[91]  U. Kompella,et al.  Influence of dosage form on the intravitreal pharmacokinetics of diclofenac. , 2009, Investigative ophthalmology & visual science.

[92]  Uday B Kompella,et al.  Ophthalmic light sensitive nanocarrier systems. , 2008, Drug discovery today.

[93]  U. Kompella,et al.  Modeling of corneal and retinal pharmacokinetics after periocular drug administration. , 2008, Investigative ophthalmology & visual science.

[94]  T. Aleman,et al.  Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. , 2009, Biomaterials.

[95]  T. Lamb,et al.  Time course of the flash response of dark‐ and light‐adapted human rod photoreceptors derived from the electroretinogram , 2001, The Journal of physiology.

[96]  M. Alonso,et al.  Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. , 2001, International journal of pharmaceutics.

[97]  A. Mitra,et al.  In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug. , 2010, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[98]  R. Iezzi,et al.  Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. , 2012, Biomaterials.

[99]  Scott E McNeil,et al.  Nanotechnology for the biologist , 2005, Journal of leukocyte biology.

[100]  U. Kompella,et al.  Size‐dependent disposition of nanoparticles and microparticles following subconjunctival administration , 2005, The Journal of pharmacy and pharmacology.

[101]  A. Ciechanover,et al.  Sorting and recycling of cell surface receptors and endocytosed ligands: The asialoglycoprotein and transferrin receptors , 1983, Journal of cellular biochemistry.

[102]  H. Edelhauser,et al.  Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. , 2007, Investigative ophthalmology & visual science.

[103]  J. Bouwstra,et al.  Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[104]  M. Ekebergh,et al.  Only a whisper away. A philosophical view of the awake patient's situation during regional anaesthetics and surgery. , 2012, Nursing philosophy : an international journal for healthcare professionals.

[105]  J. O'Brien,et al.  Subconjunctival carboplatin therapy and cryotherapy in the treatment of transgenic murine retinoblastoma. , 1997, Archives of ophthalmology.

[106]  Jun Fang,et al.  The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.

[107]  M. Maye,et al.  Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. , 2009, Environmental pollution.

[108]  U. Kompella,et al.  Comparison of long-acting bevacizumab formulations in the treatment of choroidal neovascularization in a rat model. , 2010, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[109]  Seiji Aoyagi,et al.  Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle , 2007 .

[110]  P. Tyagi,et al.  Flt23k nanoparticles offer additive benefit in graft survival and anti-angiogenic effects when combined with triamcinolone. , 2012, Investigative ophthalmology & visual science.

[111]  U. Kompella,et al.  Nanoparticles for Ocular Drug Delivery , 2006 .

[112]  D. Abramson,et al.  Fibrin sealant for retinoblastoma: where are we? , 2008, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[113]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[114]  Hu Yang,et al.  Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. , 2012, ACS nano.

[115]  U. Kompella,et al.  Periocular routes for retinal drug delivery , 2004, Expert opinion on drug delivery.

[116]  Mark R Prausnitz,et al.  Microneedles for transdermal drug delivery. , 2004, Advanced drug delivery reviews.

[117]  P. Campochiaro,et al.  Delivery from episcleral exoplants. , 2006, Investigative ophthalmology & visual science.

[118]  U. Kompella,et al.  Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene , 2007, Molecular vision.

[119]  A. Bill MOVEMENT OF ALBUMIN AND DEXTRAN THROUGH THE SCLERA. , 1965, Archives of ophthalmology.

[120]  Uday B Kompella,et al.  Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. , 2003, Investigative ophthalmology & visual science.

[121]  E. Fabrizio,et al.  Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol , 2006 .

[122]  Sander R. Dubovy,et al.  Evaluation of Magnetic Micro- and Nanoparticle Toxicity to Ocular Tissues , 2011, PloS one.

[123]  Robert N Weinreb,et al.  Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. , 2002, Investigative ophthalmology & visual science.

[124]  U. Kompella,et al.  Sclera-choroid-RPE transport of eight β-blockers in human, bovine, porcine, rabbit, and rat models. , 2011, Investigative ophthalmology & visual science.

[125]  J Cunha-Vaz,et al.  Diabetic Macular Edema , 1998 .

[126]  M. Prausnitz,et al.  Coated microneedles for drug delivery to the eye. , 2007, Investigative ophthalmology & visual science.

[127]  S. K. Li,et al.  Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[128]  J. V. van Meurs,et al.  High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. , 1999, American journal of ophthalmology.

[129]  A. Mitra,et al.  Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. , 2007, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[130]  Aleksandr Ovsianikov,et al.  Two‐photon polymerization technique for microfabrication of CAD‐designed 3D scaffolds from commercially available photosensitive materials , 2007, Journal of tissue engineering and regenerative medicine.

[131]  W. Hauswirth,et al.  Ab-Externo AAV-Mediated Gene Delivery to the Suprachoroidal Space Using a 250 Micron Flexible Microcatheter , 2011, PloS one.

[132]  U. Kompella,et al.  Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer. , 2006, Investigative ophthalmology & visual science.

[133]  D. Liepmann,et al.  Arrays of hollow out-of-plane microneedles for drug delivery , 2005, Journal of Microelectromechanical Systems.

[134]  M. Dobrovolskaia,et al.  Immunological properties of engineered nanomaterials , 2007, Nature Nanotechnology.

[135]  J. Robinson,et al.  Drug delivery to the posterior segment of the eye II: development and validation of a simple pharmacokinetic model for subconjunctival injection. , 2004, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[136]  S. J. Kang,et al.  Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. , 2009, Archives of ophthalmology.

[137]  Shannon M. Conley,et al.  Nanoparticles for retinal gene therapy , 2010, Progress in Retinal and Eye Research.

[138]  E. Larsson The effect of dummy-sucking on the occlusion: a review. , 1986, European journal of orthodontics.

[139]  B. Youan,et al.  Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[140]  M. Radomski,et al.  Nanoparticles: pharmacological and toxicological significance , 2007, British journal of pharmacology.

[141]  H. Junginger,et al.  Chitosan and its derivatives as intestinal absorption enhancers. , 2001, Advanced drug delivery reviews.

[142]  Robert Sinclair,et al.  Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. , 2008, Small.

[143]  J. V. van Meurs,et al.  Peribulbar corticosteroid injection: vitreal and serum concentrations after dexamethasone disodium phosphate injection. , 1997, American journal of ophthalmology.

[144]  M. Otagiri,et al.  Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. , 2002, Biological & pharmaceutical bulletin.

[145]  Aleksander S. Popel,et al.  Protein Transport to Choroid and Retina following Periocular Injection: Theoretical and Experimental Study , 2007, Annals of Biomedical Engineering.

[146]  U. Kompella,et al.  Effect of Diabetes on Transscleral Delivery of Celecoxib , 2009, Pharmaceutical Research.

[147]  P. Jani,et al.  Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. , 2007, Investigative ophthalmology & visual science.

[148]  Uday B Kompella,et al.  Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. , 2010, Nanomedicine.

[149]  Yolanda Diebold,et al.  Applications of nanoparticles in ophthalmology , 2010, Progress in Retinal and Eye Research.

[150]  H E Junginger,et al.  Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[151]  L. Wheeler,et al.  Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. , 2002, Drug metabolism and disposition: the biological fate of chemicals.

[152]  D. Maurice Drug delivery to the posterior segment from drops. , 2002, Survey of ophthalmology.

[153]  Mark G. Allen,et al.  Hollow metal microneedles for insulin delivery to diabetic rats , 2005, IEEE Transactions on Biomedical Engineering.

[154]  M. Naud,et al.  Suprachoroidal electrotransfer: a nonviral gene delivery method to transfect the choroid and the retina without detaching the retina. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[155]  Jean Bennett,et al.  Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging. , 2004, Applied optics.

[156]  Y. Ogura,et al.  Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. , 2004, Investigative ophthalmology & visual science.

[157]  F. Bandello,et al.  Posterior juxtascleral infusion of modified triamcinolone acetonide formulation for refractory diabetic macular edema: one-year follow-up. , 2009, Investigative ophthalmology & visual science.

[158]  Alexander V Kabanov,et al.  Nanogels for oligonucleotide delivery to the brain. , 2004, Bioconjugate chemistry.

[159]  Mark G. Allen,et al.  Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[161]  J. Araiz,et al.  Photodynamic therapy in subfoveal and juxtafoveal idiopathic and postinflammatory choroidal neovascularization. , 2006, Acta ophthalmologica Scandinavica.

[162]  Brian C. Stagg,et al.  Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization. , 2012, Investigative ophthalmology & visual science.

[163]  U. Kompella,et al.  Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration , 2008, Molecular vision.

[164]  Jung-Hwan Park,et al.  Dissolving microneedles for transdermal drug delivery. , 2008, Biomaterials.

[165]  Mark R. Prausnitz,et al.  Intrascleral Drug Delivery to the Eye Using Hollow Microneedles , 2009, Pharmaceutical Research.

[166]  D. Maurice,et al.  Diffusion across the sclera. , 1977, Experimental eye research.

[167]  Y. Ogura,et al.  OCULAR TISSUE DISTRIBUTION OF BETAMETHASONE AFTER ANTERIOR-EPISCLERAL, POSTERIOR-EPISCLERAL, AND ANTERIOR-INTRASCLERAL PLACEMENT OF NONBIODEGRADABLE IMPLANTS , 2007, Retina.

[168]  Jonghyeon Kim,et al.  A novel bioerodible deep scleral lamellar cyclosporine implant for uveitis. , 2006, Investigative ophthalmology & visual science.

[169]  U. Kompella,et al.  Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. , 2010, Investigative ophthalmology & visual science.

[170]  H. Maeda,et al.  Tumoritropic and lymphotropic principles of macromolecular drugs. , 1989, Critical reviews in therapeutic drug carrier systems.

[171]  Conor O'Mahony,et al.  Processing difficulties and instability of carbohydrate microneedle arrays , 2009, Drug development and industrial pharmacy.

[172]  L. Koole,et al.  In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. , 2002, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[173]  D. Brooks,et al.  Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. , 2010, Veterinary ophthalmology.

[174]  J. Jonas,et al.  Short-term complications of intravitreal injections of triamcinolone and bevacizumab , 2008, Eye.

[175]  I. Tamai,et al.  Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. , 1988, Ophthalmic research.

[176]  Chandra Sekhar Kolli,et al.  Characterization of Solid Maltose Microneedles and their Use for Transdermal Delivery , 2007, Pharmaceutical Research.

[177]  P. Campochiaro,et al.  Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. , 2003, Investigative ophthalmology & visual science.

[178]  S. Roy,et al.  Surface‐functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[179]  Joan W. Miller,et al.  Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. , 2003, Investigative ophthalmology & visual science.

[180]  J. V. van Meurs,et al.  Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. , 2000, Ophthalmology.

[181]  C. Shields,et al.  Periocular triamcinolone for prevention of macular edema after plaque radiotherapy of uveal melanoma: a randomized controlled trial. , 2009, Ophthalmology.

[182]  T. Phillips,et al.  Conjunctival M cells selectively bind and translocate Maackia amurensis leukoagglutinin. , 2005, Experimental eye research.

[183]  H. Takeuchi,et al.  Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes. , 2012, International journal of pharmaceutics.

[184]  S. Sahoo,et al.  Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells , 2011, Molecular vision.

[185]  U. Kompella,et al.  Effect of eye pigmentation on transscleral drug delivery. , 2008, Investigative ophthalmology & visual science.

[186]  Bernstein Hn Chloroquine ocular toxicity. , 1967 .

[187]  H F Edelhauser,et al.  Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV , 2009, Gene Therapy.

[188]  Vladimir P Torchilin,et al.  PEG-based micelles as carriers of contrast agents for different imaging modalities. , 2002, Advanced drug delivery reviews.

[189]  Marina A Dobrovolskaia,et al.  Nanoparticles and the immune system. , 2010, Endocrinology.

[190]  J. Gallo,et al.  A Simple Rheological Method for the in Vitro Assessment of Mucin-Polymer Bioadhesive Bond Strength , 1990, Pharmaceutical Research.