Hidden Markov Model for a self-learning of Simulated Annealing cooling law

The Simulated Annealing (SA) is a stochastic local search algorithm. It is an adaptation of the Metropolis-Hastings Monte Carlo algorithm. SA mimics the annealing process in metallurgy to approximate the global optimum of an optimization problem and uses a temperature parameter to control the search. The efficiency of the simulated annealing algorithm involves the adaptation of the cooling schedule. In this paper, we integrate Hidden Markov Model (HMM) in SA to iteratively predict the best cooling law according to the search history. Experiments performed on many benchmark functions show that our proposed scheme outperforms other SA variants in term of quality of solutions.

[1]  Alberto L. Sangiovanni-Vincentelli,et al.  A Parallel Simulated Annealing Algorithm for the Placement of Macro-Cells , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Patrick Siarry,et al.  A theoretical study on the behavior of simulated annealing leading to a new cooling schedule , 2005, Eur. J. Oper. Res..

[3]  L. Ingber Very fast simulated re-annealing , 1989 .

[4]  Sanja Petrovic,et al.  Using Simulated Annealing to Study Behaviour of Various Exam Timetabling Data Sets , 2003 .

[5]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..

[6]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[8]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[9]  Malek Sarhani,et al.  Investigation of hidden markov model for the tuning of metaheuristics in airline scheduling problems , 2016 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Philip N. Strenski,et al.  Analysis of finite length annealing schedules , 2005, Algorithmica.

[12]  Emile H. L. Aarts,et al.  Parallel implementations of the statistical cooling algorithm , 1986, Integr..

[13]  Chinyao Low,et al.  Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines , 2005, Comput. Oper. Res..

[14]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[15]  Wen-Chyuan Chiang,et al.  Simulated annealing for machine layout problems in the presence of zoning constraints , 1992 .

[16]  I. Osman,et al.  Simulated annealing for permutation flow-shop scheduling , 1989 .

[17]  Saeed Zolfaghari,et al.  Adaptive temperature control for simulated annealing: a comparative study , 2004, Comput. Oper. Res..

[18]  H. Szu Fast simulated annealing , 1987 .

[19]  Malek Sarhani,et al.  Hidden Markov Model Classifier for the Adaptive Particle Swarm Optimization , 2018 .

[20]  Mark Howard Jones,et al.  A parallel simulated annealing algorithm for standard cell placement on a hypercube computer , 1987 .