Model Sets and New Versions of Shannon Sampling Theorem
暂无分享,去创建一个
[1] A. Olevskiǐ,et al. Universal sampling of band-limited signals , 2006 .
[2] M. Senechal. Quasicrystals and geometry , 1995 .
[3] Y. Meyer. Trois problèmes sur les sommes trigonométriques , 1973 .
[4] Robert V. Moody,et al. Model Sets: A Survey , 2000 .
[5] R. Salem. Algebraic numbers and Fourier analysis , 1963 .
[6] Yves Meyer. Le spectre de Wiener , 1966 .
[7] A. Olevskiǐ,et al. Universal Sampling and Interpolation of Band-Limited Signals , 2008 .
[8] Basarab Matei,et al. A variant of compressed sensing , 2009 .
[9] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[10] Peter A. B. Pleasants,et al. Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.
[11] Jeffrey C. Lagarias,et al. Meyer's concept of quasicrystal and quasiregular sets , 1996 .
[12] G. Kozma,et al. Exponential Riesz Bases, Discrepancy of Irrational Rotations and BMO , 2010, 1009.2188.
[13] Y. Meyer,et al. Simple quasicrystals are sets of stable sampling , 2010 .
[14] L. Schwartz. Théorie des distributions , 1966 .
[15] R. Moody. Uniform Distribution in Model Sets , 2002, Canadian Mathematical Bulletin.
[16] G. Kozma,et al. Combining Riesz bases , 2012, 1210.6383.
[17] At Hof,et al. On diffraction by aperiodic structures , 1995 .
[18] Jean-Pierre Kahane,et al. Pseudo-périodicité et séries de Fourier lacunaires , 1962 .
[19] R. Moody. MATHEMATICAL QUASICRYSTALS: A TALE OF TWO TOPOLOGIES , 2006 .
[20] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..
[21] Y. Meyer,et al. Nombres de Pisot, Nombres de Salem et Analyse Harmonique , 1970 .
[22] R. Moody. Meyer Sets and Their Duals , 1997 .
[23] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[24] Yves Meyer,et al. Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .
[25] Karlheinz Gröchenig,et al. Random Sampling of Entire Functions of Exponential Type in Several Variables , 2007 .
[26] Jeffrey C. Lagarias,et al. Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..
[27] H. Landau. Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .
[28] N. Wiener. The Fourier Integral: and certain of its Applications , 1933, Nature.
[29] Basarab Matei,et al. Quasicrystals are sets of stable sampling , 2008 .
[30] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[31] Yves Meyer,et al. Algebraic numbers and harmonic analysis , 1972 .
[32] M. Baake,et al. Mathematical quasicrystals and the problem of diffraction , 2000 .
[33] G. Chistyakov,et al. Random perturbations of exponential Riesz bases in $L^2(-\pi,\pi)$ , 1997 .