An experimental evaluation of state estimation in multivariable control systems

This paper describes the application of two state estimation techniques, Kalman filters and Luenberger observers, to a computer-controlled pilot plant evaporator. The estimation techniques are used to provide state estimates for an optimal feedback control system and are evaluated using both simulated and experimental data.

[1]  E. Tse,et al.  Observer-estimators for discrete-time systems , 1973 .

[2]  A. MacFarlane,et al.  Survey paper: A survey of some recent results in linear multivariable feedback theory , 1972 .

[3]  R. B. Newell,et al.  Experimental evaluation of optimal, multivariable regulatory controllers with model-following capabilities , 1972 .

[4]  M. A. Athans,et al.  The role and use of the stochastic linear-quadratic-Gaussian problem in control system design , 1971 .

[5]  M. M. Newmann,et al.  Design algorithms for minimal-order Luenberger observers , 1969 .

[6]  D. Luenberger Observers for multivariable systems , 1966 .

[7]  N. Munro,et al.  Computer-aided-design procedure for reduced-order observers. Estimate of entire state vector , 1973 .

[8]  D. Williamson,et al.  Design of low-order observers for linear feedback control laws , 1972 .

[9]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[10]  Dale E. Seborg,et al.  MODEL REFERENCE ADAPTIVE CONTROL BASED ON LIAPUNOV'S DIRECT METHOD Part I: Theory and Control System Design† , 1974 .

[11]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[12]  D. Grant Fisher,et al.  EXPERIMENTAL EVALUATION OF OPTIMAL MULTIVARIABLE SERVO CONTROL IN CONJUNCTION WITH CONVENTIONAL REGULATORY CONTROL , 1973 .

[13]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[14]  J. Bongiorno,et al.  Observers for linear multivariable systems with applications , 1971 .

[15]  R.W.H. Sargent,et al.  Applications of linear estimation theory to chemical processes: a feasibility study , 1969 .

[16]  Dale E. Seborg,et al.  Modal approach to control law reduction , 1973 .

[17]  Dale E. Seborg,et al.  An experimental evaluation of Kalman filtering , 1973 .

[18]  Dale E. Seborg,et al.  Control of multivariable systems containing time delays using a multivariable smith predictor , 1974 .

[19]  N Munro,et al.  Computer-aided design procedure for reduced order observers , 1973 .

[20]  Dale E. Seborg,et al.  Computer control using optimal multivariable feedforward‐feedback algorithms , 1972 .

[21]  D. Luenberger An introduction to observers , 1971 .

[22]  Dale E. Seborg,et al.  Model reduction and the design of reduced‐order control laws , 1974 .

[23]  D. Seborg,et al.  An extension of the Smith Predictor method to multivariable linear systems containing time delays , 1973 .