Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels
暂无分享,去创建一个
C. Sorce | Bruno Villette | S. J. Moon | M. J. May | M. Primout | Kevin B. Fournier | Stephanie B. Hansen | Christine Anne Coverdale | F. Girard | J. F. Poco | D. E. Beutler | Steve MacLaren | Jeffrey D. Colvin | K. Fournier | S. Hansen | J. Satcher | J. Colvin | B. Villette | J. Poco | C. Coverdale | D. Babonneau | M. Primout | F. Girard | M. May | C. Sorce | S. Moon | J. Davis | D. Beutler | J. F. Davis | S. Maclaren | D. Babonneau | J. H. Satcher
[1] David C. Eder,et al. Progress in long scale length laser–plasma interactions , 2004 .
[2] D. Gontier,et al. DMX: An absolutely calibrated time-resolved broadband soft x-ray spectrometer designed for MJ class laser-produced plasmas (invited) , 2001 .
[3] M J Bono,et al. Experimental investigation of high-mach-number 3D hydrodynamic jets at the national ignition facility. , 2005, Physical review letters.
[4] Donald W. Phillion,et al. Laser ionization and heating of gas targets for long‐scale‐length instability experiments , 1994 .
[5] Perry M. Bell,et al. X-Ray Backlighting for the National Ignition Facility , 2000 .
[6] R. Simpson,et al. A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase , 2003 .
[7] K. Fournier,et al. Final Report on X-ray Yields from OMEGA II Targets , 2007 .
[8] Bruno Villette,et al. Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils , 2005 .
[9] K. Fournier,et al. Efficient multi-keV x-ray sources from Ti-doped aerogel targets , 2004, SPIE Optics + Photonics.
[10] Daniele Babonneau,et al. Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators , 2009 .
[11] K. R. Manes,et al. The first target experiments on the National Ignition Facility , 2007 .
[12] D. Besnard,et al. The megajoule laser program — ignition at hand , 2007 .
[13] Kevin B. Fournier,et al. Supersonic propagation of ionization waves in an underdense, laser-produced plasma , 2004 .
[14] Kevin B. Fournier,et al. Electron-Density Scaling of Conversion Efficiency of Laser Energy into L-shell X-rays , 2006 .
[15] Bruno Villette,et al. Efficient multi-keV X-ray sources from laser-exploded metallic thin foils , 2008 .
[16] S. Sutton,et al. National Ignition Facility laser performance status. , 2007, Applied optics.
[17] K. Fournier,et al. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation , 2008 .
[18] Christina A. Back,et al. Multi-keV X-Ray Conversion Efficiency in Laser-Produced Plasmas , 2002 .
[19] G. A. Kyrala,et al. X-ray yield scaling studies performed on the OMEGA laser , 2000 .
[20] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[21] K. Fournier,et al. Efficient multi-keV x-ray sources from Ti-doped aerogel targets , 2004, SPIE Optics + Photonics.
[22] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[23] L. Looney,et al. Full aperture backscatter station imager diagnostics system for far-field imaging of laser plasma instabilities on Nova , 1996 .
[24] Stephen D. Jacobs,et al. Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .
[25] Robert L. Kauffman,et al. Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .
[26] O. Landen,et al. Efficient multi-keV underdense laser-produced plasma radiators. , 2001, Physical review letters.
[27] B. J. MacGowan,et al. The national ignition facility: path to ignition in the laboratory , 2007 .
[28] George A. Kyrala,et al. Scaling of x-ray K-shell sources from laser-solid interactions , 2001, SPIE Optics + Photonics.
[29] R. Spielman. Diamond photoconducting detectors as high power z‐pinch diagnostics (invited) , 1995 .
[30] W. Kruer,et al. The Physics of Laser Plasma Interactions , 2019 .
[31] C. Brinker,et al. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .