Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

Abstract Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5–20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes.

[1]  Michael D. Uchic,et al.  A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing , 2005 .

[2]  J. Weiss,et al.  Dislocation avalanches: Role of temperature, grain size and strain hardening , 2005 .

[3]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[4]  J. G. Sevillano,et al.  Intrinsic size effects in plasticity by dislocation glide , 2001 .

[5]  V. Berdichevsky Homogenization in micro-plasticity , 2005 .

[6]  J. R. Willis,et al.  Fundamentals of deformation and fractures , 1985 .

[7]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[8]  H. Espinosa,et al.  Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression , 2007 .

[9]  J. G. Sevillano,et al.  The fractal nature of gliding dislocation lines , 1991 .

[10]  Michael Zaiser,et al.  Scale invariance in plastic flow of crystalline solids , 2006 .

[11]  D. Dimiduk,et al.  Numerical study on microcompression tests of anisotropic single crystals , 2007 .

[12]  D. Gall,et al.  High‐Temperature Tribological Behavior of CrN‐Ag Self‐lubricating Coatings , 2006 .

[13]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[14]  Oliver Kraft,et al.  Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading , 2008 .

[15]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[16]  Peter Gumbsch,et al.  Discrete dislocation simulation of plastic deformation in metal thin films , 2004 .

[17]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[18]  M. Fivel,et al.  From forest hardening to strain hardening in body centered cubic single crystals: simulation and modeling , 2001 .

[19]  P. J. Guruprasad,et al.  Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis , 2008 .

[20]  H. Zbib,et al.  Size effects and length scales in gradient plasticity and dislocation dynamics , 2003 .

[21]  Peter Gumbsch,et al.  Dislocation sources in discrete dislocation simulations of thin-film plasticity and the Hall-Petch relation , 2001 .

[22]  Alexander Hartmaier,et al.  Image stresses in a free-standing thin film , 1999 .

[23]  S. Zapperi,et al.  Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale , 2007, Science.

[24]  D. Dimiduk,et al.  Estimating the strength of single-ended dislocation sources in micron-sized single crystals , 2007 .

[25]  J. Bonneville,et al.  Cross-slipping process and the stress-orientation dependence in pure copper , 1979 .

[26]  D. Dimiduk,et al.  Scale-Free Intermittent Flow in Crystal Plasticity , 2006, Science.

[27]  Michael D. Uchic,et al.  Overview of experiments on microcrystal plasticity in FCC-derivative materials: selected challenges for modelling and simulation of plasticity , 2007 .

[28]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[29]  G. Pharr,et al.  Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique , 2007 .

[30]  A. Needleman,et al.  Plasticity size effects in tension and compression of single crystals , 2005 .

[31]  Alessandro Vespignani,et al.  How self-organized criticality works: A unified mean-field picture , 1997, cond-mat/9709192.

[32]  Michael D. Uchic,et al.  Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples , 2007 .

[33]  Julia R. Greer,et al.  Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation , 2007 .

[34]  Huajian Gao,et al.  Discrete dislocation dynamics simulations of surface induced size effects in plasticity , 2006 .

[35]  Peter Gumbsch,et al.  Dislocation sources and the flow stress of polycrystalline thin metal films , 2003 .

[36]  A. Needleman,et al.  Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis , 2006 .

[37]  Michael D. Uchic,et al.  Size-affected single-slip behavior of pure nickel microcrystals , 2005 .

[38]  A. P. Parker Fundamentals of deformation and fracture: (Eshelby Memorial Symposium, Sheffield, 2–5 April 1984) edited by B.A. Bilby, K.J. Miller, J.R. Willis, Cambridge University Press, 1985. ISBN 0-521-26735-8, xxii + 630 pages, hard-cover, £45 , 1989 .

[39]  Alessandro Vespignani,et al.  Intermittent dislocation flow in viscoplastic deformation , 2001, Nature.

[40]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[41]  D. Dimiduk,et al.  On failure of continuum plasticity theories on small scales , 2005 .

[42]  Marisol Koslowski,et al.  Avalanches and scaling in plastic deformation. , 2004, Physical review letters.

[43]  S. Zapperi,et al.  Statistical dynamics of dislocations in simple models of plastic deformation: Phase transitions and related phenomena , 2005 .

[44]  Marisol Koslowski,et al.  Dislocation structures and the deformation of materials. , 2004, Physical review letters.

[45]  István Groma,et al.  Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications , 1998 .

[46]  van der Erik Giessen,et al.  Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics , 2002 .

[47]  A. Benzerga,et al.  Scale dependence of mechanical properties of single crystals under uniform deformation , 2006 .

[48]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[49]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[50]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[51]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[52]  P. Peralta,et al.  Length scales in crystal plasticity , 2006 .

[53]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[54]  Frans Spaepen,et al.  The yield strength of thin copper films on Kapton , 2004 .

[55]  Alberto Carpinteri,et al.  Are scaling laws on strength of solids related to mechanics or to geometry? , 2005, Nature materials.