CMOS Distributed Amplifiers Using Gate–Drain Transformer Feedback Technique

This paper presents CMOS distributed amplifiers (DAs) using the proposed gate-drain transformer feedback technique. The feedback allows reuse of the traveling signal to achieve a high gain-bandwidth product while maintaining low power consumption of DAs. With the folded transmission lines and patterned ground shield, the miniaturized transformer has high quality factors and a well-controlled feedback coupling coefficient. Two DAs are realized using the proposed technique in both 0.18-μm and 90-nm CMOS technologies, respectively. The 0.18-μm CMOS DA achieves a gain of 9.5 dB with a 3-dB bandwidth of 32 GHz, and the noise figure (NF) ranges from 4.1 to 7.6 dB under a power consumption of 71 mW. Under a power consumption of 60 mW, the 90-nm DA demonstrates a gain of 7 dB, a bandwidth of 61.3 GHz, and an NF below 6.2 dB up to 40 GHz. The core areas of the 0.18-μm and 90-nm designs are only 0.58 and 0.41 mm2, respectively.

[1]  Ali M. Niknejad,et al.  A Broadband Distributed Amplifier with Internal Feedback Providing 660GHz GBW in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  A. Jahanian,et al.  A CMOS Distributed Amplifier With Distributed Active Input Balun Using GBW and Linearity Enhancing Techniques , 2012, IEEE Transactions on Microwave Theory and Techniques.

[3]  C. Yue,et al.  On-chip Spiral Inductors With Patterned Ground Shields For Si-based RF IC's , 1997, Symposium 1997 on VLSI Circuits.

[4]  A. Freundorfer,et al.  A 10 Gb/s AlGaAs/GaAs HBT high power fully differential limiting distributed amplifier for III-V Mach-Zehnder modulator , 1996 .

[5]  Mohamed I. Elmasry,et al.  A novel matrix-based lumped-element analysis method for CMOS distributed amplifiers , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[6]  P. Heydari,et al.  Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA , 2007, IEEE Journal of Solid-State Circuits.

[7]  Shen-Iuan Liu,et al.  CMOS wideband amplifiers using multiple inductive-series peaking technique , 2005, IEEE Journal of Solid-State Circuits.

[8]  Yu-Jiu Wang,et al.  A compact low-noise weighted distributed amplifier in CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  S. Bourdel,et al.  A 52-GHz 8.5-dB Traveling-Wave Amplifier in 0.13-$\mu$m Standard CMOS Process , 2008, IEEE Transactions on Microwave Theory and Techniques.

[10]  K. Entesari,et al.  CMOS Distributed Amplifiers With Extended Flat Bandwidth and Improved Input Matching Using Gate Line With Coupled Inductors , 2009, IEEE Transactions on Microwave Theory and Techniques.

[11]  Yo-Sheng Lin,et al.  Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a $ \pi $-Match Input Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  Huei Wang,et al.  A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in ${\hbox{0.18-}} \mu{\hbox {m}}$ CMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[13]  C. Plett,et al.  50-GHz SiGe HBT distributed amplifiers employing constant-k and m-derived filter sections , 2004, IEEE Transactions on Microwave Theory and Techniques.

[14]  Liang-Hung Lu,et al.  A 4-91 GHz distributed amplifier in a standard 0.12 /spl mu/m SOI CMOS microprocessor technology , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[15]  Jun-De Jin,et al.  A Miniaturized 70-GHz Broadband Amplifier in 0.13-$\mu {\hbox{m}}$ CMOS Technology , 2008, IEEE Transactions on Microwave Theory and Techniques.

[16]  Liang-Hung Lu,et al.  40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[17]  D. Huang,et al.  Optimization of cascode CMOS low noise amplifier using inter-stage matching network , 2003, 2003 IEEE Conference on Electron Devices and Solid-State Circuits (IEEE Cat. No.03TH8668).

[18]  Yuan Taur,et al.  A 23.8-GHz SOI CMOS tuned amplifier , 2002 .

[19]  F. Ellinger 60-GHz SOI CMOS traveling-wave amplifier with NF below 3.8 dB from 0.1 to 40 GHz , 2005, IEEE Journal of Solid-State Circuits.

[20]  Jun-De Jin,et al.  A Miniaturized 70-GHz Broadband Amplifier in 0.13- m CMOS Technology , 2008 .

[21]  A.M. Niknejad,et al.  A tapered cascaded multi-stage distributed amplifier with 370GHz GBW in 90nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[22]  Huei Wang,et al.  A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[23]  Yo-Sheng Lin,et al.  Analysis and Design of CMOS Distributed Amplifier Using Inductively Peaking Cascaded Gain Cell for UWB Systems , 2011, IEEE Transactions on Microwave Theory and Techniques.

[24]  Jean-Olivier Plouchart,et al.  A 4-91 GHz Distributed Amplifier in a Standard 0.12 pm SO1 CMOS Microprocessor Technology , 2003 .

[25]  Liang-Hung Lu,et al.  A 32-GHz non-uniform distributed amplifier in 0.18-/spl mu/m CMOS , 2005 .

[26]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[27]  Kambiz Moez,et al.  A 10dB 44GHz Loss-Compensated CMOS Distributed Amplifier , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[28]  Ali M. Niknejad,et al.  A stage-scaled distributed power amplifier achieving 110GHz bandwidth and 17.5dBm peak output power , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[29]  Ping Chen,et al.  A novel distributed amplifier with high gain, low noise and high output power in 0.18-µm CMOS technology , 2011, 2011 IEEE MTT-S International Microwave Symposium.