Roll-to-roll fabrication of polymer solar cells

As the performance in terms of power conversion efficiency and operational stability for polymer and organic solar cells is rapidly approaching the key 10-10 targets (10 % efficiency and 10 years of stability) the quest for efficient, scalable, and rational processing methods has begun. The 10-10 targets are being approached through consistent laboratory research efforts, which coupled with early commercial efforts have resulted in a fast moving research field and the dawning of a new industry. We review the roll-to-roll processing techniques required to bring the magnificent 10-10 targets into reality, using quick methods with low environmental impact and low cost. We also highlight some new targets related to processing speed, materials, and environmental impact.

[1]  Mikkel Jørgensen,et al.  Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water , 2012 .

[2]  A. Carlo,et al.  Airbrush spray-coating of polymer bulk-heterojunction solar cells , 2010 .

[3]  M. Wegener,et al.  A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers , 2010 .

[4]  Yuri Lawryshyn,et al.  A model to determine financial indicators for organic solar cells , 2009 .

[5]  Viktor Schütz,et al.  Laser Processing of Thin Films for Photovoltaic Applications , 2010 .

[6]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[7]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[8]  F. Krebs,et al.  Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion , 2011, Nanotechnology.

[9]  Shijun Jia,et al.  Large-area organic photovoltaic module—Fabrication and performance , 2009 .

[10]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[11]  Patrick Toglia,et al.  Over 30% transparency large area inverted organic solar array by spray , 2011 .

[12]  Ronn Andriessen,et al.  ITO-free flexible organic solar cells with printed current collecting grids , 2011 .

[13]  Mikkel Jørgensen,et al.  ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules , 2011 .

[14]  D. Gethin,et al.  Patterning of micro-scale conductive networks using reel-to-reel flexographic printing , 2010 .

[15]  Giyoong Tae,et al.  Efficient Polymer Solar Cells Fabricated by Simple Brush Painting , 2007 .

[16]  Yang Yang,et al.  Multi-source/component spray coating for polymer solar cells. , 2010, ACS nano.

[17]  Frederik C. Krebs,et al.  Simple roll coater with variable coating and temperature control for printed polymer solar cells , 2012 .

[18]  Jaewook Kang,et al.  Spray-coated organic solar cells with large-area of 12.25 cm2 , 2011 .

[19]  Michael Niggemann,et al.  ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating , 2011 .

[20]  P. Scharfer,et al.  Investigations on knife and slot die coating and processing of polymer nanoparticle films for hybrid polymer solar cells , 2011 .

[21]  Jukka Hast,et al.  High efficient plastic solar cells fabricated with a high-throughput gravure printing method , 2010 .

[22]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[23]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[24]  Byung-Kwan Yu,et al.  Fully spray-coated ITO-free organic solar cells for low-cost power generation , 2010 .

[25]  Mikkel Jørgensen,et al.  Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. , 2011, ACS nano.

[26]  F. Krebs,et al.  Roll-to-roll processed polymer tandem solar cells partially processed from water , 2012 .

[27]  Alex K.-Y. Jen,et al.  Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells , 2009 .

[28]  Mikkel Jørgensen,et al.  Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique , 2011 .

[29]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[30]  T. Sung,et al.  Patternable solution process for fabrication of flexible polymer solar cells using PDMS , 2011 .

[31]  Christian Scholz,et al.  Laser scribing of ITO and organic solar cells , 2010, Optics + Photonics for Sustainable Energy.

[32]  F. Krebs,et al.  Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells , 2010 .

[33]  Frederik C. Krebs,et al.  Business, market and intellectual property analysis of polymer solar cells , 2010 .

[34]  Mikkel Jørgensen,et al.  Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. , 2010, ACS applied materials & interfaces.

[35]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[36]  Jan Genoe,et al.  Polymer based organic solar cells using ink-jet printed active layers , 2008 .

[37]  Vivek Subramanian,et al.  Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing , 2009 .

[38]  Hannes Schache,et al.  Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells , 2009 .

[39]  Sung Cheol Yoon,et al.  High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives , 2010 .

[40]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[41]  Frederik C. Krebs,et al.  Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing , 2012 .

[42]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[43]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[44]  Frederik C. Krebs,et al.  A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions , 2011 .

[45]  Andreas Ostendorf,et al.  Laser selective patterning of ITO on flexible PET for organic photovoltaics , 2011, LASE.

[46]  Sung Min Cho,et al.  Screen-Printed Polymer:Fullerene Bulk-Heterojunction Solar Cells , 2009 .

[47]  Jukka Hast,et al.  Gravure printed flexible organic photovoltaic modules , 2011 .

[48]  F. Krebs,et al.  Using light-induced thermocleavage in a roll-to-roll process for polymer solar cells. , 2010, ACS applied materials & interfaces.

[49]  Ho-Jun Song,et al.  Patternable brush painting process for fabrication of flexible polymer solar cells , 2011 .

[50]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[51]  Soo‐Hyoung Lee,et al.  Polymer solar cells based on inkjet-printed PEDOT:PSS layer , 2009 .

[52]  F. Krebs,et al.  Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement , 2011, Materials.

[53]  C. Buerhop-Lutz,et al.  Organic solar cells characterized by dark lock-in thermography , 2010 .

[54]  Frederik C. Krebs,et al.  Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods , 2012 .

[55]  Paul Heremans,et al.  High‐Performance Organic Solar Cells with Spray‐Coated Hole‐Transport and Active Layers , 2011 .

[56]  Christoph J. Brabec,et al.  Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing , 2011 .

[57]  H. Hoppe,et al.  Luminescence imaging of polymer solar cells: Visualization of progressing degradation , 2011 .

[58]  Mikkel Jørgensen,et al.  Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode , 2011 .

[59]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[60]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[61]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[62]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[63]  Soeren Steudel,et al.  Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells , 2009 .

[64]  Frederik C. Krebs,et al.  Life-cycle analysis of product integrated polymer solar cells , 2011 .

[65]  Shlomo Magdassi,et al.  Conductive inks with a "built-in" mechanism that enables sintering at room temperature. , 2011, ACS nano.

[66]  Ronn Andriessen,et al.  Technology development for roll-to-roll production of organic photovoltaics , 2011 .

[67]  Seok-Ju Kang,et al.  Annealing-free fabrication of P3HT:PCBM solar cells via simple brush painting , 2010 .

[68]  Jan Genoe,et al.  Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells , 2009 .

[69]  Frederik C. Krebs,et al.  The OE-A OPV demonstrator anno domini 2011 , 2011 .

[70]  Frederik C. Krebs,et al.  Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment , 2011 .

[71]  R. García‐Valverde,et al.  Life cycle analysis of organic photovoltaic technologies , 2010 .