Optimal Quadratic Regulation of Nonlinear System Using Koopman Operator

In this paper, we study the optimal quadratic regulation problem for nonlinear systems. The linear operator theoretic framework involving the Koopman operator is used to lift the dynamics of nonlinear control system to an infinite dimensional bilinear system. Optimal quadratic regulation problem for nonlinear system is formulated in terms of the finite dimensional approximation of the bilinear system. A convex optimization-based approach is proposed for solving the quadratic regulator problem for bilinear system. Simulation results are presented to demonstrate the application of the developed framework.

[1]  I. Mezic,et al.  Nonlinear Koopman Modes and Coherency Identification of Coupled Swing Dynamics , 2011, IEEE Transactions on Power Systems.

[2]  Prashant G. Mehta,et al.  Lyapunov Measure for Almost Everywhere Stability , 2008, IEEE Transactions on Automatic Control.

[3]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[4]  Joachim Bocker,et al.  Koopman Operator Based Finite-Set Model Predictive Control for Electrical Drives , 2018, 1804.00854.

[5]  Umesh Vaidya,et al.  Optimal Stabilization Using Lyapunov Measures , 2014, IEEE Transactions on Automatic Control.

[6]  Damien Ernst,et al.  An Optimal Control Formulation of Pulse-Based Control Using Koopman Operator , 2017, Autom..

[7]  Stefan Klus,et al.  Feedback Control of Nonlinear PDEs Using Data-Efficient Reduced Order Models Based on the Koopman Operator , 2018, 1806.09898.

[8]  Igor Mezic,et al.  Uniform coverage control of mobile sensor networks for dynamic target detection , 2010, 49th IEEE Conference on Decision and Control (CDC).

[9]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[10]  Yoshihiko Susuki,et al.  Power grid transient stabilization using Koopman model predictive control , 2018, 1803.10744.

[11]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[12]  Umesh Vaidya,et al.  Data-Driven Approximation of Transfer Operators: Naturally Structured Dynamic Mode Decomposition , 2017, 2018 Annual American Control Conference (ACC).

[13]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[14]  Sebastian Peitz,et al.  Controlling nonlinear PDEs using low-dimensional bilinear approximations obtained from data. , 2018, 1801.06419.

[15]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[16]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[17]  Gary Froyland,et al.  Optimal Mixing Enhancement by Local Perturbation , 2016, SIAM Rev..

[18]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[19]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[20]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[21]  I. Mezić,et al.  A data-driven Koopman model predictive control framework for nonlinear flows , 2018, 1804.05291.

[22]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[23]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[24]  Prashant G. Mehta,et al.  Nonlinear Stabilization via Control Lyapunov Measure , 2010, IEEE Transactions on Automatic Control.

[25]  Umesh Vaidya,et al.  Feedback Stabilization Using Koopman Operator , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[26]  Erik M. Bollt,et al.  Combinatorial Control of Global Dynamics in a Chaotic differential equation , 2001, Int. J. Bifurc. Chaos.

[27]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[28]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[29]  Alessandro Astolfi,et al.  Feedback Stabilization of Nonlinear Systems , 2015, Encyclopedia of Systems and Control.

[30]  Stefan Klus,et al.  Koopman operator-based model reduction for switched-system control of PDEs , 2017, Autom..

[31]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .