Bounded Orbits and Multiple Scroll Coexisting Attractors in a Dual System of Chua System

A special three-dimensional chaotic system was proposed in 2016, as a dual system of Chua system, which is satisfied <inline-formula> <tex-math notation="LaTeX">$a_{12}\cdot $ </tex-math></inline-formula> <inline-formula> <tex-math notation="LaTeX">$a_{21}< 0$ </tex-math></inline-formula><italic>.</italic> The dynamics characteristics are different from the Jerk system (<inline-formula> <tex-math notation="LaTeX">$a_{12}\cdot $ </tex-math></inline-formula> <inline-formula> <tex-math notation="LaTeX">$a_{21}=0$ </tex-math></inline-formula>) and Chua system (<inline-formula> <tex-math notation="LaTeX">$a_{12}\cdot $ </tex-math></inline-formula> <inline-formula> <tex-math notation="LaTeX">$a_{21}>0$ </tex-math></inline-formula>). In this paper, a method for generating <italic>M</italic> <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> <italic>N</italic> <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> <italic>L</italic> grid multiple scroll attractors is presented for this system. Also, in order to ensure the rigor of the theoretical results, we prove existence of the complex scenario of bounded orbits, such as homoclinic and heteroclinic orbits, and illustrate concurrent created and annihilated of symmetric orbits. Then, Shilnikov bifurcation and the possible relationship between the birth and death of the scroll attractors are studied. Furthermore, two theorems are demonstrated for these bounded orbits. Finally, the Lyapunov exponents, bifurcation diagrams, and multiple scroll coexisting attractors are displayed, which are related to the parameters and initial condition.

[1]  D. Younesian,et al.  Chaos prediction in nonlinear viscoelastic plates subjected to subsonic flow and external load using extended Melnikov’s method , 2016 .

[2]  Jacques M. Bahi,et al.  Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Jacques Kengne,et al.  Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Chaotic Jerk Circuit , 2016, Int. J. Bifurc. Chaos.

[4]  Simin Yu,et al.  Generation of grid multi-scroll chaotic attractors via switching piecewise linear controller , 2010 .

[5]  Xinghuo Yu,et al.  Design and Implementation of Grid Multiwing Hyperchaotic Lorenz System Family via Switching Control and Constructing Super-Heteroclinic Loops , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Qiang Lai,et al.  Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors , 2018, Chaos, Solitons & Fractals.

[7]  Leandro M Alonso,et al.  Nonlinear resonances and multi-stability in simple neural circuits. , 2016, Chaos.

[8]  Kehui Sun,et al.  Design of Grid Multiscroll Chaotic Attractors via Transformations , 2015, Int. J. Bifurc. Chaos.

[9]  Wei Zhou,et al.  Hidden Coexisting Attractors in a Chaotic System Without Equilibrium Point , 2018, Int. J. Bifurc. Chaos.

[10]  Guanrong Chen,et al.  Design and FPGA-Based Realization of a Chaotic Secure Video Communication System , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Luigi Fortuna,et al.  Chaotic pulse position modulation to improve the efficiency of sonar sensors , 2003, IEEE Trans. Instrum. Meas..

[12]  Bharat Bhushan Sharma,et al.  Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty , 2017 .

[13]  Ling Zhou,et al.  Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator , 2018, Int. J. Bifurc. Chaos.

[14]  Karthikeyan Rajagopal,et al.  Analysis and electronic implementation of an absolute memristor autonomous Van der Pol-Duffing circuit , 2019, The European Physical Journal Special Topics.

[15]  Fang Yuan,et al.  A memristor–meminductor-based chaotic system with abundant dynamical behaviors , 2019, Nonlinear Dynamics.

[16]  Qiang Lai,et al.  A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design , 2017, Entropy.

[17]  Sen Zhang,et al.  A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees , 2019, Chaos, Solitons & Fractals.

[18]  Herbert Ho-Ching Iu,et al.  Novel Floating and Grounded Memory Interface Circuits for Constructing Mem-Elements and Their Applications , 2020, IEEE Access.

[19]  Shuxu Guo,et al.  Generation and dynamics analysis of N-scrolls existence in new translation-type chaotic systems. , 2016, Chaos.

[20]  Qiang Lai,et al.  Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria , 2018 .

[21]  Huagan Wu,et al.  Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain , 2018 .

[22]  Lan Xu,et al.  Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems , 2014 .

[23]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[24]  Guanrong Chen,et al.  Design and ARM-Embedded Implementation of a Chaotic Map-Based Real-Time Secure Video Communication System , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Mo Chen,et al.  Self-Excited and Hidden Attractors Found Simultaneously in a Modified Chua's Circuit , 2015, Int. J. Bifurc. Chaos.

[26]  Herbert Ho-Ching Iu,et al.  Chaotic oscillator based on memcapacitor and meminductor , 2019, Nonlinear Dynamics.

[27]  Shuxu Guo,et al.  Generation of 2N + 1-scroll existence in new three-dimensional chaos systems. , 2016, Chaos.

[28]  Junan Lu,et al.  A Simple Yet Complex One-parameter Family of Generalized Lorenz-like Systems , 2011, Int. J. Bifurc. Chaos.

[29]  Jacques Kengne,et al.  Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit , 2017 .

[30]  Qiang Lai,et al.  Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit , 2020, Commun. Nonlinear Sci. Numer. Simul..

[31]  Herbert Ho-Ching Iu,et al.  Antimonotonicity, Chaos and Multidirectional Scroll Attractor in Autonomous ODEs Chaotic System , 2020, IEEE Access.

[32]  Ling Zhou,et al.  A novel no‐equilibrium hyperchaotic multi‐wing system via introducing memristor , 2018, Int. J. Circuit Theory Appl..

[33]  Philip Holmes,et al.  Introduction to the focus issue: fifty years of chaos: applied and theoretical. , 2012, Chaos.

[34]  Jinhu Lu,et al.  Breaking an Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos , 2019, Entropy.

[35]  Jinhu Lu,et al.  On Cryptanalysis of Fridrich's chaotic image encryption scheme , 2016, ArXiv.

[36]  Qiang Lai,et al.  Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.

[37]  Chengqing Li,et al.  ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate , 2016 .

[38]  Kehui Sun,et al.  Design of $n$-dimensional multi-scroll Jerk chaotic system and its performances , 2016 .

[39]  Qiang Lai,et al.  An Extremely Simple Chaotic System With Infinitely Many Coexisting Attractors , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[40]  Jia-shi Tang,et al.  A generalized Padé–Lindstedt–Poincaré method for predicting homoclinic and heteroclinic bifurcations of strongly nonlinear autonomous oscillators , 2016 .

[41]  I. L. Caldas,et al.  Shilnikov homoclinic orbit bifurcations in the Chua's circuit. , 2006, Chaos.