Gap-planar graphs

[1]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[2]  Peter Eades,et al.  Circular right-angle crossing drawings in linear time , 2016, Theor. Comput. Sci..

[3]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[4]  Balázs Keszegh,et al.  On the Size of Planarly Connected Crossing Graphs , 2015, GD.

[5]  Arthur Appel,et al.  The haloed line effect for hidden line elimination. , 1979, SIGGRAPH '79.

[6]  Michael A. Bekos,et al.  On the Relationship between k-Planar and k-Quasi Planar Graphs , 2017, WG.

[7]  David Eppstein,et al.  Structure of Graphs with Locally Restricted Crossings , 2015, SIAM J. Discret. Math..

[8]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[9]  Giuseppe Liotta,et al.  Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.

[10]  Daniel J. Kleitman,et al.  The crossing number of K5,n , 1970 .

[11]  Giuseppe Liotta,et al.  A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..

[12]  Michael A. Bekos,et al.  On RAC drawings of 1-planar graphs , 2017, Theor. Comput. Sci..

[13]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.

[14]  Giuseppe Liotta,et al.  An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..

[15]  Michael Kaufmann,et al.  Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.

[16]  Michael A. Bekos,et al.  Guest Editors' Foreword and Overview , 2018, J. Graph Algorithms Appl..

[17]  Hiroshi Nagamochi,et al.  Testing Full Outer-2-planarity in Linear Time , 2015, WG.

[18]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[19]  Bettina Speckmann,et al.  Edges and Switches, Tunnels and Bridges , 2009, Comput. Geom..

[20]  David Eppstein,et al.  Crossing Patterns in Nonplanar Road Networks , 2017, SIGSPATIAL/GIS.

[21]  R. Guy Crossing numbers of graphs , 1972 .

[22]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..

[23]  Christian Bachmaier,et al.  Outer 1-Planar Graphs , 2016, Algorithmica.

[24]  Weidong Huang,et al.  Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..

[25]  Maurice Queyranne,et al.  A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory , 1982, Networks.

[26]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[27]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[28]  Brendan D. McKay,et al.  The Generation of Fullerenes , 2012, J. Chem. Inf. Model..

[29]  C. Zarankiewicz On a problem of P. Turan concerning graphs , 1955 .

[30]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[31]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.

[32]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .

[33]  Walter Didimo,et al.  The Crossing-Angle Resolution in Graph Drawing , 2013 .

[34]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[35]  Csaba D. Tóth,et al.  Two-Planar Graphs Are Quasiplanar , 2017, MFCS.

[36]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.

[37]  Franz-Josef Brandenburg,et al.  Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .

[38]  Sang Won Bae,et al.  Gap-Planar Graphs , 2017, Graph Drawing.

[39]  Michael Kaufmann,et al.  Mad at Edge Crossings? Break the Edges! , 2012, FUN.

[40]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[41]  Venkat Venkateswaran,et al.  Minimizing maximum indegree , 2004, Discret. Appl. Math..

[42]  Michael A. Bekos,et al.  On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.

[43]  Alexander Wolff,et al.  Progress on Partial Edge Drawings , 2012, GD.