暂无分享,去创建一个
[1] Mario Berta,et al. The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.
[2] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[3] Jaikumar Radhakrishnan,et al. Prior entanglement, message compression and privacy in quantum communication , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).
[4] Mario Berta,et al. Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.
[5] Igor Devetak,et al. Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.
[6] Verzekeren Naar Sparen,et al. Cambridge , 1969, Humphrey Burton: In My Own Time.
[7] Fernando G S L Brandão,et al. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.
[8] M. Berta. Single-shot Quantum State Merging , 2009, 0912.4495.
[9] Robert Azencott,et al. Ecole d'eté de probabilités de Saint-Flour VIII-1978 , 1980 .
[10] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[11] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[12] Rahul Jain,et al. A new operational interpretation of relative entropy and trace distance between quantum states , 2014, ArXiv.
[13] Mark M. Wilde,et al. Fidelity of recovery and geometric squashed entanglement , 2014, ArXiv.
[14] Physical Review , 1965, Nature.
[15] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[16] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[17] R. Renner,et al. Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.
[18] Jonathan Oppenheim. State redistribution as merging: introducing the coherent relay , 2008 .
[19] Dave Touchette. Direct Sum Theorem for Bounded Round Quantum Communication Complexity , 2014, ArXiv.
[20] Jaikumar Radhakrishnan,et al. Optimal Direct Sum and Privacy Trade-off Results for Quantum and Classical Communication Complexity , 2008, ArXiv.
[21] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour. VII-1977 , 1978 .
[22] F. Dupuis. The decoupling approach to quantum information theory , 2010, 1004.1641.
[23] Nilanjana Datta,et al. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution , 2014, 1409.4352.
[24] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[25] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.
[26] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[27] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[28] Ming-Yong Ye,et al. Quantum state redistribution based on a generalized decoupling , 2008 .
[29] Igor Devetak,et al. Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.
[30] J. A. Salvato. John wiley & sons. , 1994, Environmental science & technology.
[31] I. Devetak,et al. Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.
[32] Thomas M. Cover,et al. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .
[33] Dave Touchette,et al. Smooth Entropy Bounds on One-Shot Quantum State Redistribution , 2014, IEEE Transactions on Information Theory.
[34] R. Renner,et al. One-Shot Decoupling , 2010, 1012.6044.
[35] Jaikumar Radhakrishnan,et al. Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[36] N. Datta,et al. The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.
[37] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[38] B. M. Fulk. MATH , 1992 .