Near optimal bounds on quantum communication complexity of single-shot quantum state redistribution

We show near optimal bounds on the worst case quantum communication of single-shot entanglement-assisted one-way quantum communication protocols for the {\em quantum state redistribution} task and for the sub-tasks {\em quantum state splitting} and {\em quantum state merging}. Our bounds are tighter than previously known best bounds for the latter two sub-tasks. A key technical tool that we use is a {\em convex-split} lemma which may be of independent interest.

[1]  Mario Berta,et al.  The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[3]  Jaikumar Radhakrishnan,et al.  Prior entanglement, message compression and privacy in quantum communication , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[4]  Mario Berta,et al.  Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.

[5]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[6]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[7]  Fernando G S L Brandão,et al.  Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.

[8]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[9]  Robert Azencott,et al.  Ecole d'eté de probabilités de Saint-Flour VIII-1978 , 1980 .

[10]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[11]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[12]  Rahul Jain,et al.  A new operational interpretation of relative entropy and trace distance between quantum states , 2014, ArXiv.

[13]  Mark M. Wilde,et al.  Fidelity of recovery and geometric squashed entanglement , 2014, ArXiv.

[14]  Physical Review , 1965, Nature.

[15]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[16]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[17]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[18]  Jonathan Oppenheim State redistribution as merging: introducing the coherent relay , 2008 .

[19]  Dave Touchette Direct Sum Theorem for Bounded Round Quantum Communication Complexity , 2014, ArXiv.

[20]  Jaikumar Radhakrishnan,et al.  Optimal Direct Sum and Privacy Trade-off Results for Quantum and Classical Communication Complexity , 2008, ArXiv.

[21]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour. VII-1977 , 1978 .

[22]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[23]  Nilanjana Datta,et al.  An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution , 2014, 1409.4352.

[24]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[25]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[26]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[27]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Ming-Yong Ye,et al.  Quantum state redistribution based on a generalized decoupling , 2008 .

[29]  Igor Devetak,et al.  Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.

[30]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[31]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[32]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[33]  Dave Touchette,et al.  Smooth Entropy Bounds on One-Shot Quantum State Redistribution , 2014, IEEE Transactions on Information Theory.

[34]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[35]  Jaikumar Radhakrishnan,et al.  Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[36]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[37]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[38]  B. M. Fulk MATH , 1992 .