In vitro biocompatibility of an ultrafine grained zirconium.

[1]  A. Méndez-Vilas,et al.  Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface. , 2007, Ultramicroscopy.

[2]  Tao Xu,et al.  Modification of nanostructured materials for biomedical applications , 2007 .

[3]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanograined Ti modified with KRSR. , 2007, Journal of biomedical materials research. Part A.

[4]  Thomas Jay Webster,et al.  Nanomedicine for implants: a review of studies and necessary experimental tools. , 2007, Biomaterials.

[5]  R Thull,et al.  Nanostructured niobium oxide coatings influence osteoblast adhesion. , 2006, Journal of biomedical materials research. Part A.

[6]  A. Méndez-Vilas,et al.  Looking at the micro-topography of polished and blasted Ti-based biomaterials using atomic force microscopy and contact angle goniometry. , 2006, Colloids and surfaces. B, Biointerfaces.

[7]  J. I. Qazi,et al.  Titanium alloys for biomedical applications , 2006 .

[8]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[9]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[10]  R. Oreffo,et al.  Osteoprogenitor response to semi-ordered and random nanotopographies. , 2006, Biomaterials.

[11]  K. Jandt,et al.  Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? , 2006, Colloids and surfaces. B, Biointerfaces.

[12]  Peter Gehrke,et al.  Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. , 2006, Quintessence international.

[13]  J. Nebe,et al.  The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells , 2005 .

[14]  G. Dinda,et al.  Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling , 2005 .

[15]  Kulakov Ob,et al.  Experimental study of osseointegration of zirconium and titanium dental implants , 2005 .

[16]  E. Eisenbarth,et al.  Biocompatibility of β-stabilizing elements of titanium alloys , 2004 .

[17]  V. Stolyarov,et al.  Corrosion resistance of ultra fine-grained Ti , 2004 .

[18]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[19]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[20]  Sherepo Km,et al.  The use of zirconium for implants in traumatology and orthopedics , 2004 .

[21]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[22]  J. Schwarzbauer,et al.  The ins and outs of fibronectin matrix assembly , 2003, Journal of Cell Science.

[23]  W. Fu,et al.  Regulation of fibronectin fibrillogenesis by protein kinases in cultured rat osteoblasts. , 2002, Molecular pharmacology.

[24]  Maxence Bigerelle,et al.  Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. , 2002, Biomaterials.

[25]  Hiroshi Utsunomiya,et al.  Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process , 2002 .

[26]  V. Vogel,et al.  Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Textor,et al.  Characterization of Titanium Surfaces , 2001 .

[28]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[29]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[30]  Maxence Bigerelle,et al.  Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. , 2000, Journal of biomedical materials research.

[31]  R. Cabrini,et al.  A histomorphometric study of tissue interface by laminar implant test in rats. , 1999, The International journal of oral & maxillofacial implants.

[32]  M. Niinomi Recent titanium R&D for biomedical applications in japan , 1999 .

[33]  C. Lohmann,et al.  Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. , 1998, Biomaterials.

[34]  B. Kasemo,et al.  Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium , 1997, Journal of materials science. Materials in medicine.

[35]  R. Cabrini,et al.  Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. , 1997, Acta odontologica latinoamericana : AOL.

[36]  M. Ginsberg,et al.  Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix , 1995, Cell.

[37]  J. C. Almagro,et al.  HISTOMORPHOMETRY OF INITIAL BONE HEALING AROUND ZIRCONIUM IMPLANTS IN RATS , 1993, Implant dentistry.

[38]  K. M. Sherepo,et al.  [Use of zirconium alloys in endoprostheses and osteosynthesis appliances]. , 1992, Meditsinskaia tekhnika.

[39]  E. Tenckhoff Deformation mechanisms, texture, and anisotropy in zirconium and Zircaloy , 1988 .