Identities among relations for higher-dimensional rewriting systems
暂无分享,去创建一个
[1] E. Robertson,et al. Groups St Andrews 2001 in Oxford , 2003 .
[2] Friedrich Otto,et al. For Groups the Property of Having Finite Derivation Type is Equivalent to the Homological Finiteness Condition FP_3 , 1996, J. Symb. Comput..
[3] M. Kapranov,et al. Hidden Stasheff polytopes in algebraic K-theory and in the space of Morse functions. , 1999 .
[4] Philippe Malbos,et al. Higher-dimensional categories with finite derivation type , 2008, 0810.1442.
[5] J. Huebschmann,et al. Identities among relations , 1982 .
[6] J. Whitehead,et al. Combinatorial homotopy. II , 1949 .
[7] Friedrich Otto,et al. A Finiteness Condition for Rewriting Systems , 1994, Theor. Comput. Sci..
[8] H. Baues,et al. The cohomology of homotopy categories and the general linear group , 1989 .
[9] Christopher D. Wensley,et al. Groups St Andrews 2001 in Oxford: Logged rewriting and identities among relators , 2003 .
[10] R. Peiffer. Über Identitäten zwischen Relationen , 1949 .
[11] Elias Gabriel Minian,et al. Track extensions of categories and cohomology. , 2001 .
[12] Craig C. Squier,et al. Word problems and a homological niteness condition for monoids , 1987 .
[13] M. Newman. On Theories with a Combinatorial Definition of "Equivalence" , 1942 .
[14] Albert Burroni,et al. Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..
[15] J.-L. Loday,et al. Extensions centrales d'algèbres de Lie , 1982 .
[16] M. Jibladze,et al. Classification of Abelian Track Categories , 2002 .
[17] K. Reidemeister. Über Identitäten von Relationen , 1949 .
[18] H. Baues. Combinatorial homotopy and 4-dimensional complexes , 1990 .
[19] T. Porter. Some categorical results in the theory of crossed modules in commutative algebras , 1987 .