Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines

[1]  J. Hurley,et al.  The molecular genetics of colorectal cancer , 2013, Frontline Gastroenterology.

[2]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[3]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[4]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[5]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[6]  R. Bernards,et al.  Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR , 2012, Nature.

[7]  Fidel Ramírez,et al.  Novel search method for the discovery of functional relationships , 2011, Bioinform..

[8]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[9]  Javier Sastre,et al.  Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior , 2012, BMC Cancer.

[10]  A. Rust,et al.  Insertional mutagenesis identifies multiple networks of co-operating genes driving intestinal tumorigenesis , 2011, Nature Genetics.

[11]  M. J. van de Vijver,et al.  Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. , 2011, Cell stem cell.

[12]  T. Yeatman,et al.  Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer , 2011, Gut.

[13]  Renzo Boldorini,et al.  Increased Detection Sensitivity for KRAS Mutations Enhances the Prediction of Anti-EGFR Monoclonal Antibody Resistance in Metastatic Colorectal Cancer , 2011, Clinical Cancer Research.

[14]  E. Van Cutsem,et al.  Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  J. Herman,et al.  Colorectal cancer epigenetics: complex simplicity. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Matej Horvat,et al.  Microsatellite instability in colorectal cancer , 2011, Radiology and oncology.

[17]  P. Kozuch,et al.  Impact of KRAS Mutations on Management of Colorectal Carcinoma , 2011, Pathology research international.

[18]  L. V. van't Veer,et al.  Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  David B Jackson,et al.  EMT is the dominant program in human colon cancer , 2011, BMC Medical Genomics.

[20]  D. Cunningham,et al.  Targeted therapies as adjuvant treatment for early-stage colorectal cancer: first impressions and clinical questions. , 2010, Clinical colorectal cancer.

[21]  S. Paik,et al.  Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Kakajan Komurov,et al.  Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes , 2010, Proceedings of the National Academy of Sciences.

[23]  Bertram Klinger,et al.  Discovering causal signaling pathways through gene-expression patterns , 2010, Nucleic Acids Res..

[24]  Ajay Goel,et al.  Microsatellite instability in colorectal cancer. , 2010, Gastroenterology.

[25]  Joel Greshock,et al.  Molecular target class is predictive of in vitro response profile. , 2010, Cancer research.

[26]  B. Taylor,et al.  Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). , 2010, Cancer research.

[27]  T. Yeatman,et al.  Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. , 2010, Gastroenterology.

[28]  J. Auman,et al.  Colorectal cancer cell lines lack the molecular heterogeneity of clinical colorectal tumors. , 2010, Clinical colorectal cancer.

[29]  Renaud Gaujoux,et al.  A flexible R package for nonnegative matrix factorization , 2010, BMC Bioinformatics.

[30]  M. Bertagnolli,et al.  Molecular origins of cancer: Molecular basis of colorectal cancer. , 2009, The New England journal of medicine.

[31]  T. Ørntoft,et al.  Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer , 2009, Clinical Cancer Research.

[32]  G. Casey,et al.  Genetic and epigenetic classifications define clinical phenotypes and determine patient outcomes in colorectal cancer , 2009, The British journal of surgery.

[33]  Y. Asmann,et al.  A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer , 2009, Science.

[34]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[35]  Elena Edelman,et al.  A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities , 2008, Proceedings of the National Academy of Sciences.

[36]  J. Issa Colon Cancer: It's CIN or CIMP , 2008, Clinical Cancer Research.

[37]  C. I. Neutel,et al.  Gender differences in colorectal cancer incidence, mortality, hospitalizations and surgical procedures in Canada. , 2008, Journal of public health.

[38]  D. Kell BMC Medical Genomics , 2008 .

[39]  Paolo G. V. Martini,et al.  PANP - a New Method of Gene Detection on Oligonucleotide Expression Arrays , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.

[40]  G. Cavet,et al.  Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL , 2007, Nature Medicine.

[41]  N. Kasabov,et al.  Multiple Gene Expression Classifiers from Different Array Platforms Predict Poor Prognosis of Colorectal Cancer , 2007, Clinical Cancer Research.

[42]  R. Lothe,et al.  Molecular Cancer Gene Expression Profiles of Primary Colorectal Carcinomas, Liver Metastases, and Carcinomatoses , 2022 .

[43]  S. Dudoit,et al.  Stage II colon cancer prognosis prediction by tumor gene expression profiling. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Astola,et al.  Gene-expression profiling predicts recurrence in Dukes' C colorectal cancer. , 2005, Gastroenterology.

[46]  R. Taichman,et al.  Clusterin inhibits apoptosis by interacting with activated Bax , 2005, Nature Cell Biology.

[47]  John Quackenbush,et al.  Synchronous global assessment of gene and protein expression in colorectal cancer progression. , 2005, Genomics.

[48]  I. Yang,et al.  Molecular staging for survival prediction of colorectal cancer patients. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[50]  David C. Atkins,et al.  Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[51]  F. Bertucci,et al.  Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters , 2004, Oncogene.

[52]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[53]  W. Willett,et al.  Harvard Report on Cancer Prevention , 2004, Cancer Causes & Control.

[54]  Anping Li,et al.  DACH1 Inhibits Transforming Growth Factor-β Signaling through Binding Smad4* , 2003, Journal of Biological Chemistry.

[55]  B. Aronow,et al.  Essential Requirement of Apolipoprotein J (Clusterin) Signaling for IκB Expression and Regulation of NF-κB Activity* , 2003, Journal of Biological Chemistry.

[56]  T. Ørntoft,et al.  Classification of Dukes' B and C colorectal cancers using expression arrays , 2003, Journal of Cancer Research and Clinical Oncology.

[57]  Anping Li,et al.  DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. , 2003, The Journal of biological chemistry.

[58]  B. Aronow,et al.  Essential requirement of apolipoprotein J (clusterin) signaling for IkappaB expression and regulation of NF-kappaB activity. , 2003, The Journal of biological chemistry.

[59]  T. Ørntoft,et al.  Gene expression in colorectal cancer. , 2002, Cancer research.

[60]  T. Smyrk,et al.  Tumor‐infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma , 2001, Cancer.

[61]  F Ries,et al.  The biology of colorectal cancer. , 2000, Seminars in oncology.

[62]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[63]  W. Willett,et al.  Harvard Report on Cancer Prevention. Volume 3: prevention of colon cancer in the United States. , 1999, Cancer causes & control : CCC.

[64]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[65]  J. Bufill,et al.  Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. , 1990, Annals of internal medicine.