Exact constructions of square-root Helmholtz operator symbols: The focusing quadratic profile

Operator symbols play a pivotal role in both the exact, well-posed, one-way reformulation of solving the (elliptic) Helmholtz equation and the construction of the generalized Bremmer coupling series. The inverse square-root and square-root Helmholtz operator symbols are the initial quantities of interest in both formulations, in addition to providing the theoretical framework for the development and implementation of the “parabolic equation” (PE) method in wave propagation modeling. Exact, standard (left) and Weyl symbol constructions are presented for both the inverse square-root and square-root Helmholtz operators in the case of the focusing quadratic profile in one transverse spatial dimension, extending (and, ultimately, unifying) the previously published corresponding results for the defocusing quadratic case [J. Math. Phys. 33, 1887–1914 (1992)]. Both (i) spectral (modal) summation representations and (ii) contour-integral representations, exploiting the underlying periodicity of the associated, qua...

[1]  A new perspective on functional integration , 1995, funct-an/9602005.

[2]  L. Landau Quantum Mechanics-Nonrelativistic Theory , 1958 .

[3]  C. Grosche,et al.  Handbook of Feynman Path Integrals , 1995 .

[4]  Ding Lee,et al.  PARABOLIC EQUATION DEVELOPMENT IN RECENT DECADE , 1995 .

[5]  Charles Vassallo,et al.  Optical Waveguide Concepts , 1991 .

[6]  E. Heller,et al.  New L2 Approach to Quantum Scattering: Theory , 1974 .

[7]  S. Wales,et al.  Factorization and path integration of the Helmholtz equation: Numerical algorithms , 1987 .

[8]  Louis Fishman,et al.  Derivation and application of extended parabolic wave theories. I. The factorized Helmholtz equation , 1984 .

[9]  H. Bremermann Distributions, complex variables, and Fourier transforms , 1968 .

[10]  R. Crandall Exact propagator for reflectionless potentials , 1983 .

[11]  Van,et al.  Generalized Bremmer series with rational approximation for the scattering of waves in inhomogeneous media , 1996 .

[12]  Carl E. Pearson,et al.  Functions of a complex variable - theory and technique , 2005 .

[13]  W. Burnside Theory of Functions , 1899, Nature.

[14]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[15]  Gary H. Brooke,et al.  Rational square-root approximations for parabolic equation algorithms , 1997 .

[16]  S. Wales,et al.  Phase space methods and path integration: the analysis and computation of scalar wave equations , 1987 .

[17]  Louis Fishman,et al.  One-way wave propagation methods in direct and inverse scalar wave propagation modeling , 1993 .

[18]  Michael B. Porter,et al.  Computational Ocean Acoustics , 1994 .

[19]  William H. Press,et al.  Numerical recipes , 1990 .

[20]  A Rigorous Path Integral Construction in any Dimension , 1998, math/9802058.

[21]  Louis Fishman,et al.  Derivation and application of extended parabolic wave theories. II. Path integral representations , 1984 .

[22]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[23]  S. Mallat A wavelet tour of signal processing , 1998 .

[24]  H. Blok,et al.  Generalized Bremmer series with rational approximation for the scattering of waves in inhomogeneous media , 1998 .

[25]  Louis Fishman Exact solutions for reflection and Dirichlet-to-Neumann operator symbols in direct and inverse wave propagation modeling , 1994, Defense, Security, and Sensing.

[26]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[27]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[28]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[29]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[30]  Ru-Shan Wu,et al.  Generalization of the phase-screen approximation for the scattering of acoustic waves , 2000 .

[31]  E. Merzbacher Quantum mechanics , 1961 .

[32]  Henry Weinberg,et al.  Horizontal ray theory for ocean acoustics , 1974 .

[33]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .

[34]  Maarten V. de Hoop,et al.  Generalization of the Bremmer coupling series , 1996 .

[35]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[36]  L. Fishman,et al.  J-Matrix Method: Extensions to Arbitrary Angular Momentum and to Coulomb Scattering , 1975 .

[37]  M.J.N. van Stralen,et al.  Directional Decomposition of Electromagnetic and Acoustic Wave-Fields - Applications in integrated optics, exploration seismics and underwater acoustics , 1997 .

[38]  Louis Fishman,et al.  Factorization, path integral representations, and the construction of direct and inverse wave propagation theories , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Path Integral Solution of the Dirichlet Problem , 1997 .

[40]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[41]  B. Gaveau,et al.  Explicit time-dependent Schrodinger propagators , 1986 .

[42]  L. Hörmander The weyl calculus of pseudo‐differential operators , 1979 .

[43]  Maarten V. de Hoop,et al.  Uniform Asymptotic Expansion of the Generalized Bremmer Series , 2000, SIAM J. Appl. Math..

[44]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[45]  L. Fishman Exact and operator rational approximate solutions of the Helmholtz, Weyl composition equation in underwater acoustics−The quadratic profile , 1992 .

[46]  Jon F. Claerbout,et al.  Imaging the Earth's Interior , 1985 .

[47]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[48]  Louis Fishman,et al.  Uniform high-frequency approximations of the square root Helmholtz operator symbol , 1997 .