Hexahedral shell mesh construction via volumetric polycube map

Shells are three-dimensional structures. One dimension, the thickness, is much smaller than the other two dimensions. Shell structures can be widely found in many real-world objects. This paper presents a method to construct a layered hexahedral mesh for shell objects. Given a closed 2-manifold and the user-specified thickness, we construct the shell space using the distance field and then parameterize the shell space to a polycube domain. The volume parameterization induces the hexahedral tessellation in the object shell space. As a result, the constructed mesh is an all-hexahedral mesh in which most of the vertices are regular, i.e., the valence is 6 for interior vertices and 5 for boundary vertices. The mesh also has a layered structure that all layers have exactly the same tessellation. We prove our parameterization is guaranteed to be bijective. As a result, the constructed hexahedral mesh is free of degeneracy, such as self-intersection, flip-over, etc. We also show that the iso-parametric line (in the thickness dimension) is orthogonal to the other two isoparametric lines. We demonstrate the efficacy of our method upon models of various topology.

[1]  Ted D. Blacker Meeting the Challenge for Automated Conformal Hexahedral Meshing , 2000 .

[2]  Steven E. Benzley,et al.  A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis , 2011 .

[3]  F. SchneidersR.Schindler,et al.  Octree-based Generation of Hexahedral Element Meshes , 1996 .

[4]  Cornelia Kober,et al.  Hexahedral Mesh Generation for the Simulation of the Human Mandible , 2000, IMR.

[5]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[6]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[7]  Willem F. Bronsvoort,et al.  Variational Tetrahedral Meshing of Mechanical Models for Finite Element Analysis , 2008 .

[8]  Alla Sheffer,et al.  Hexahedral Mesh Generation using the Embedded Voronoi Graph , 1999, Engineering with Computers.

[9]  Hong Qin,et al.  Manifold splines , 2005, SPM '05.

[10]  J.,et al.  Whisker weaving: Invalid connectivity resolution and primal construction algorithm , 1995 .

[11]  Hong Qin,et al.  User-controllable polycube map for manifold spline construction , 2008, SPM '08.

[12]  J. Goldak,et al.  A DISTORTION METRIC FOR ISOPARAMETRIC FINITE ELEMENTS , 1988 .

[13]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[14]  Chi-Wing Fu,et al.  Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.

[15]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[16]  Chandrajit L. Bajaj,et al.  Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow , 2005, IMR.

[17]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[18]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[19]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[20]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[21]  Hong Qin,et al.  Meshless Harmonic Volumetric Mapping Using Fundamental Solution Methods , 2009, IEEE Transactions on Automation Science and Engineering.

[22]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[23]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[24]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[25]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[26]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[27]  Kenji Shimada,et al.  Hex-Layer: Layered All-Hex Mesh Generation on Thin Section Solids via Chordal Surface Transformation , 2002, IMR.

[28]  Scott A. Mitchell,et al.  Whisker weaving: Invalid connectivity resolution and primal construction algorithm , 1995 .

[29]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[30]  Kenneth I. Joy,et al.  Shell maps , 2005, ACM Trans. Graph..

[31]  Matthew L. Staten,et al.  Unconstrained Paving and Plastering: Progress Update , 2006, IMR.

[32]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[33]  Stephen Lin,et al.  Modeling and rendering of heterogeneous translucent materials using the diffusion equation , 2008, TOGS.

[34]  Yalin Wang,et al.  Volumetric Harmonic Map , 2003, Commun. Inf. Syst..

[35]  Ying He,et al.  Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.

[36]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[37]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.