Assembly and phase transitions of colloidal crystals

Micrometre-sized colloidal particles can be viewed as large atoms with tailorable size, shape and interactions. These building blocks can assemble into extremely rich structures and phases, in which the thermal motions of particles can be directly imaged and tracked using optical microscopy. Hence, colloidal particles are excellent model systems for studying phase transitions, especially for poorly understood kinetic and non-equilibrium microscale processes. Advances in colloid fabrication, assembly and computer simulations have opened up numerous possibilities for such research. In this Review, we describe recent progress in the study of colloidal crystals composed of tunable isotropic spheres, anisotropic particles and active particles. We focus on advances in crystallization, melting and solid–solid transitions, and highlight challenges and future perspectives in phase-transition studies within colloidal crystals. Colloidal crystals composed of isotropic spheres are powerful model systems for the studies of crystallization, melting and solid–solid transitions at the single-particle level. Tunable, anisotropic or active particles provide greater opportunities to study crystal assembly and phase transitions.

[1]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[2]  J. Lutsko,et al.  Classical nucleation theory from a dynamical approach to nucleation. , 2012, The Journal of chemical physics.

[3]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[4]  R. Bruinsma,et al.  Entropic crystal–crystal transitions of Brownian squares , 2011, Proceedings of the National Academy of Sciences.

[5]  M. Dijkstra,et al.  Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. , 2013, Physical review letters.

[6]  Y. Katsuta,et al.  Studies on suspension and emulsion. XLVII. Anomalous composite polymer emulsion particles with voids produced by seeded emulsion polymerization , 1981 .

[7]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light - Second Edition , 2008 .

[8]  S. Chui Grain-Boundary Theory of Melting in Two Dimensions , 1982 .

[9]  Werner Krauth,et al.  Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions. , 2014, Physical review letters.

[10]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[11]  V. Manoharan Colloidal matter: Packing, geometry, and entropy , 2015, Science.

[12]  D. Frenkel,et al.  Prediction of an expanded-to-condensed transition in colloidal crystals. , 1994, Physical review letters.

[13]  Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  J. van der Gucht,et al.  Highly cooperative stress relaxation in two-dimensional soft colloidal crystals , 2013, Proceedings of the National Academy of Sciences.

[15]  Alfons van Blaaderen,et al.  Melting and crystallization of colloidal hard-sphere suspensions under shear , 2009, Proceedings of the National Academy of Sciences.

[16]  S. Granick,et al.  Rotating crystals of magnetic Janus colloids. , 2015, Soft matter.

[17]  A. Imhof,et al.  Fabrication of Polyhedral Particles from Spherical Colloids and Their Self-Assembly into Rotator Phases** , 2014, Angewandte Chemie.

[18]  Francesco Sciortino,et al.  Predicting crystals of Janus colloids. , 2013, The Journal of chemical physics.

[19]  David G. Grier,et al.  VIDEO MICROSCOPY OF MONODISPERSE COLLOIDAL SYSTEMS , 1996 .

[20]  Jie Zhang,et al.  Toward design rules of directional janus colloidal assembly. , 2015, Annual review of physical chemistry.

[21]  T. Schilling,et al.  Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres , 2013, 1301.5592.

[22]  M. Dijkstra,et al.  Dense regular packings of irregular nonconvex particles. , 2011, Physical review letters.

[23]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[24]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[25]  E. Sanz,et al.  Phase diagram of trivalent and pentavalent patchy particles , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  M. Dijkstra,et al.  Critical casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram. , 2014, Physical review letters.

[27]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[28]  Yi Peng,et al.  Modes of surface premelting in colloidal crystals composed of attractive particles , 2016, Nature.

[29]  A. P. Young,et al.  Melting and the vector Coulomb gas in two dimensions , 1979 .

[30]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[31]  Talid Sinno,et al.  Driving diffusionless transformations in colloidal crystals using DNA handshaking , 2012, Nature Communications.

[32]  V. Dmitriev,et al.  Reconstructive Phase Transitions: In Crystals and Quasicrystals , 1996 .

[33]  G. Odriozola,et al.  Further details on the phase diagram of hard ellipsoids of revolution. , 2013, The Journal of chemical physics.

[34]  T. M. Lysak,et al.  Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. , 2012, Optics express.

[35]  Chad A. Mirkin,et al.  DNA-mediated nanoparticle crystallization into Wulff polyhedra , 2013, Nature.

[36]  C. Angell,et al.  Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice , 2010, Proceedings of the National Academy of Sciences.

[37]  P. Schurtenberger,et al.  Multiple Path-Dependent Routes for Phase-Transition Kinetics in Thermoresponsive and Field-Responsive Ultrasoft Colloids , 2015 .

[38]  Qian Chen,et al.  Directed self-assembly of a colloidal kagome lattice , 2014 .

[39]  S. Rice,et al.  Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow , 2011, Proceedings of the National Academy of Sciences.

[40]  G. Maret,et al.  Kibble–Zurek mechanism in colloidal monolayers , 2015, Proceedings of the National Academy of Sciences.

[41]  Anand Yethiraj,et al.  Tunable colloids: control of colloidal phase transitions with tunable interactions. , 2007, Soft matter.

[42]  J. Savage,et al.  Experimental evidence for two-step nucleation in colloidal crystallization. , 2009, Physical review letters.

[43]  Albert Libchaber,et al.  Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. , 2015, Physical review letters.

[44]  J. Doye,et al.  Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. , 2006, The Journal of chemical physics.

[45]  W. E,et al.  Microscopic mechanisms of equilibrium melting of a solid , 2014, Science.

[46]  Qian Chen,et al.  Entropy favours open colloidal lattices. , 2013, Nature materials.

[47]  Daan Frenkel,et al.  Rational design of self-assembly pathways for complex multicomponent structures , 2015, Proceedings of the National Academy of Sciences.

[48]  Steve Granick,et al.  Colloidal-sized metal-organic frameworks: synthesis and applications. , 2014, Accounts of chemical research.

[49]  Francesco Sciortino,et al.  Casimir-like forces at the percolation transition , 2013, Nature Communications.

[50]  H. Löwen,et al.  Phase behavior of ionic microgels. , 2004, Physical review letters.

[51]  David R. Nelson,et al.  Theory of Two-Dimensional Melting , 1978 .

[52]  Hajime Tanaka,et al.  Purely hydrodynamic ordering of rotating disks at a finite Reynolds number , 2015, Nature Communications.

[53]  G. Yi,et al.  Recent progress on patchy colloids and their self-assembly , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  D. Frenkel Playing Tricks with Designer "Atoms" , 2002, Science.

[55]  James T. McGinley,et al.  Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites , 2014, Proceedings of the National Academy of Sciences.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Igor Muševič,et al.  Reconfigurable Knots and Links in Chiral Nematic Colloids , 2011, Science.

[58]  J. Socolar,et al.  Phase transformations in binary colloidal monolayers. , 2015, Soft matter.

[59]  Malte Henkel,et al.  Non-Equilibrium Phase Transitions , 2010 .

[60]  M. Engel,et al.  Controlled self-assembly of periodic and aperiodic cluster crystals. , 2014, Physical review letters.

[61]  Hajime Tanaka,et al.  Key role of hydrodynamic interactions in colloidal gelation. , 2010, Physical review letters.

[62]  John R. Tumbleston,et al.  Continuous liquid interface production of 3D objects , 2015, Science.

[63]  David G Grier,et al.  Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers , 2013, Proceedings of the National Academy of Sciences.

[64]  A G Yodh,et al.  Melting of colloidal crystal films. , 2010, Physical review letters.

[65]  Q. Wei,et al.  Grain boundary dynamics under mechanical annealing in two-dimensional colloids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  V. Manoharan,et al.  Programming colloidal phase transitions with DNA strand displacement , 2014, Science.

[67]  Ralf Lenke,et al.  Two-stage melting of paramagnetic colloidal crystals in two dimensions , 1999 .

[68]  C. A. Murray,et al.  Martensitic transition in a confined colloidal suspension , 1995 .

[69]  D. Buzza,et al.  Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry. , 2013, Physical review letters.

[70]  D. Frenkel Colloidal Encounters: A Matter of Attraction , 2006, Science.

[71]  E. Matijević,et al.  Monodispersed metal (hydrous) oxides - a fascinating field of colloid science , 1981 .

[72]  K. Takano,et al.  Direct observation of ordered latex suspension by metallurgical microscope , 1973 .

[73]  T. Mason,et al.  Self-organized chiral colloidal crystals of Brownian square crosses , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[74]  L. Ceseracciu,et al.  Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. , 2011, Nature materials.

[75]  S. Egelhaaf,et al.  Crystallization seeds favour crystallization only during initial growth , 2015, Nature Communications.

[76]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[77]  D. Frenkel,et al.  Onset of heterogeneous crystal nucleation in colloidal suspensions , 2004, Nature.

[78]  Douglas J. Ashton,et al.  Shape-sensitive crystallization in colloidal superball fluids , 2015, Proceedings of the National Academy of Sciences.

[79]  A G Yodh,et al.  Premelting at Defects Within Bulk Colloidal Crystals , 2005, Science.

[80]  N. Xu,et al.  From Crystals to Disordered Crystals: A Hidden Order-Disorder Transition , 2015, Scientific Reports.

[81]  H. Lekkerkerker,et al.  Insights into phase transition kinetics from colloid science , 2002, Nature.

[82]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[83]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[84]  Yu Wang,et al.  Colloids with valence and specific directional bonding , 2012, Nature.

[85]  D. Roehm,et al.  Hydrodynamic interactions slow down crystallization of soft colloids. , 2014, Soft matter.

[86]  A. Yethiraj,et al.  Nature of an electric-field-induced colloidal martensitic transition. , 2004, Physical review letters.

[87]  D. Frenkel,et al.  Does C60 have a liquid phase? , 1993, Nature.

[88]  M. Dijkstra,et al.  Nucleation of colloidal crystals on configurable seed structures , 2011 .

[89]  D. Frenkel,et al.  Numerical evidence for nucleated self-assembly of DNA brick structures. , 2014, Physical review letters.

[90]  Lang Feng,et al.  Re-entrant solidification in polymer-colloid mixtures as a consequence of competing entropic and enthalpic attractions. , 2015, Nature materials.

[91]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[92]  Yilong Han,et al.  Melting of two-dimensional tunable-diameter colloidal crystals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Jennifer S. Robinson Melting , 2018, Phase Transitions for Beginners.

[94]  C. Patrick Royall,et al.  Ionic colloidal crystals of oppositely charged particles , 2005, Nature.

[95]  Li-jun Wu,et al.  Assembling of three-dimensional crystals by large nonequilibrium depletion force , 2010, 1012.3025.

[96]  T. Plakhotnik,et al.  Single-molecule spectroscopy. , 2003, Annual review of physical chemistry.

[97]  Andreas Walther,et al.  Janus particles: synthesis, self-assembly, physical properties, and applications. , 2013, Chemical reviews.

[98]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[99]  和田 八三久 Materials science. , 1973, Science.

[100]  P. Geissler,et al.  Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. , 2012, Nature materials.

[101]  Arjun G Yodh,et al.  Two-step nucleation mechanism in solid-solid phase transitions. , 2015, Nature materials.

[102]  T. Pusztai,et al.  Heterogeneous crystal nucleation: the effect of lattice mismatch. , 2012, Physical review letters.

[103]  Andreas Stein,et al.  Colloidal assembly: the road from particles to colloidal molecules and crystals. , 2011, Angewandte Chemie.

[104]  Josep C. Pàmies,et al.  Phase diagram of Hertzian spheres. , 2008, The Journal of chemical physics.

[105]  R. Sear Nucleation: theory and applications to protein solutions and colloidal suspensions , 2007 .

[106]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[107]  David R. Nelson,et al.  Elastic Instability of a Crystal Growing on a Curved Surface , 2014, Science.

[108]  M. Cates,et al.  Crystallization of hard-sphere glasses. , 2009, Physical review letters.

[109]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[110]  Hartmut Löwen,et al.  Traveling and resting crystals in active systems. , 2012, Physical review letters.

[111]  P. Werner,et al.  First-order dynamical phase transitions. , 2014, Physical review letters.

[112]  Mo Li,et al.  Nature and extent of melting in superheated solids : Liquid-solid coexistence model , 2005 .

[113]  Homin Shin,et al.  Theory of two-dimensional self-assembly of Janus colloids: crystallization and orientational ordering. , 2014, Soft matter.

[114]  Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[115]  Yi Peng,et al.  Nonclassical Nucleation in a Solid-Solid Transition of Confined Hard Spheres. , 2015, Physical review letters.

[116]  J. McTague,et al.  Should All Crystals Be bcc? Landau Theory of Solidification and Crystal Nucleation , 1978 .

[117]  Mark A. Miller,et al.  Crystallization of deformable spherical colloids. , 2010, Physical review letters.

[118]  Randall D. Kamien,et al.  Topological colloids , 2013, Nature.

[119]  Wojciech H. Zurek,et al.  Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.

[120]  D. Frenkel,et al.  Line tension controls wall-induced crystal nucleation in hard-sphere colloids. , 2003, Physical review letters.

[121]  Ke Chen,et al.  Phonons in two-dimensional soft colloidal crystals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  R. Bruinsma,et al.  Local chiral symmetry breaking in triatic liquid crystals , 2012, Nature Communications.

[123]  Alfons van Blaaderen,et al.  Switching plastic crystals of colloidal rods with electric fields , 2014, Nature Communications.

[124]  G. Odriozola,et al.  Phase diagram of two-dimensional hard ellipses. , 2014, The Journal of chemical physics.

[125]  Erik Luijten,et al.  Janus Particle Synthesis and Assembly , 2010, Advanced materials.

[126]  S. Sacanna,et al.  Shape-anisotropic colloids: Building blocks for complex assemblies , 2011 .

[127]  Melting of microgel colloidal crystals , 2011 .

[128]  L. Berthier,et al.  Nonequilibrium equation of state in suspensions of active colloids , 2014, 1411.7175.

[129]  Schmidt,et al.  Freezing between two and three dimensions. , 1996, Physical review letters.

[130]  A. Levine,et al.  Imaging the Sublimation Dynamics of Colloidal Crystallites , 2006, Science.

[131]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[132]  P. Damasceno,et al.  Computational self-assembly of a one-component icosahedral quasicrystal. , 2015, Nature materials.

[133]  H. Löwen Melting, freezing and colloidal suspensions , 1994 .

[134]  C H Mak Large-scale simulations of the two-dimensional melting of hard disks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Katherine J. Strandburg,et al.  Two-dimensional melting , 1988 .

[136]  Defect-mediated phase transitions in active soft matter. , 2014, Physical review letters.

[137]  Flavio Romano,et al.  Patterning symmetry in the rational design of colloidal crystals , 2012, Nature Communications.

[138]  C. Maloney,et al.  Normal Modes and Density of States of Disordered Colloidal Solids , 2010, Science.

[139]  M. Cates,et al.  Crystallization mechanism of hard sphere glasses. , 2011, Physical review letters.

[140]  J. Crocker,et al.  Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling , 2011, Proceedings of the National Academy of Sciences.

[141]  N. Xu,et al.  Supplementary Information for Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization , 2013 .

[142]  Chad A Mirkin,et al.  A General Approach to DNA- Programmable Atom Equivalents* , 2020, Spherical Nucleic Acids.

[143]  U. Gasser,et al.  Crystallization in three- and two-dimensional colloidal suspensions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[144]  H. Lekkerkerker,et al.  Phase transitions in colloidal suspensions , 1997 .

[145]  Peter Schurtenberger,et al.  Anisotropic responsive microgels with tuneable shape and interactions. , 2015, Nanoscale.

[146]  S. Ramaswamy,et al.  Hydrodynamics of soft active matter , 2013 .

[147]  M. Dijkstra,et al.  A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers. , 2015, Soft matter.

[148]  David T. Limmer,et al.  3D structure of individual nanocrystals in solution by electron microscopy , 2015, Science.

[149]  Grier,et al.  Melting of metastable crystallites in charge-stabilized colloidal suspensions. , 1996, Physical review letters.

[150]  William T. M. Irvine,et al.  Pleats in crystals on curved surfaces , 2010, Nature.

[151]  D. Heyes,et al.  Interactions between microgel particles , 2009 .

[152]  David J. Pine,et al.  Cubic crystals from cubic colloids , 2011 .

[153]  T. Kawasaki,et al.  Formation of a crystal nucleus from liquid , 2010, Proceedings of the National Academy of Sciences.

[154]  G Opletal,et al.  Precursor-mediated crystallization process in suspensions of hard spheres. , 2010, Physical review letters.

[155]  A. Pérez-Escudero,et al.  idTracker: tracking individuals in a group by automatic identification of unmarked animals , 2014, Nature Methods.

[156]  A. Yodh,et al.  Melting of multilayer colloidal crystals confined between two walls. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[157]  Clark,et al.  Nucleation and growth of colloidal crystals. , 1986, Physical review letters.

[158]  Stephen Whitelam,et al.  The statistical mechanics of dynamic pathways to self-assembly. , 2014, Annual review of physical chemistry.

[159]  Michael P Brenner,et al.  Size limits of self-assembled colloidal structures made using specific interactions , 2014, Proceedings of the National Academy of Sciences.

[160]  P. Ziherl,et al.  Mosaic two-lengthscale quasicrystals , 2014, Nature.

[161]  D. Frenkel,et al.  Entropy difference between crystal phases , 1997, Nature.

[162]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[163]  Thomas Speck,et al.  Crystallization in a dense suspension of self-propelled particles. , 2011, Physical review letters.

[164]  Thomas Speck,et al.  Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. , 2013, Physical review letters.

[165]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[166]  P. Schall,et al.  Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  M. Dijkstra Entropy‐Driven Phase Transitions in Colloids: From spheres to anisotropic particles , 2014 .

[168]  Ayusman Sen,et al.  Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. , 2010, Physical chemistry chemical physics : PCCP.

[169]  Andrea Cavagna,et al.  Supercooled liquids for pedestrians , 2009, 0903.4264.

[170]  Yi Peng,et al.  Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals , 2015, Nature Communications.

[171]  Feng Wang,et al.  Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. , 2011, Physical review letters.

[172]  Yi Peng,et al.  Imaging the Homogeneous Nucleation During the Melting of Superheated Colloidal Crystals , 2012, Science.

[173]  Holger Stark,et al.  Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. , 2013, Physical review letters.

[174]  Controlling colloidal phase transitions with critical Casimir forces. , 2013, Nature communications.

[175]  Bartosz A. Grzybowski,et al.  Colloidal assembly directed by virtual magnetic moulds , 2013, Nature.

[176]  W. L. Miller,et al.  Two-dimensional packing of soft particles and the soft generalized Thomson problem , 2011, 1106.2787.

[177]  Stephen R. Williams,et al.  Direct observation of a local structural mechanism for dynamic arrest. , 2008, Nature materials.

[178]  Yael Roichman,et al.  Holographic assembly of quasicrystalline photonic heterostructures. , 2005, Optics express.

[179]  John S. Wettlaufer,et al.  The physics of premelted ice and its geophysical consequences , 2006 .

[180]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[181]  Jaewon Yoon,et al.  Recent advances with anisotropic particles , 2011 .

[182]  K. Landfester,et al.  Wafer‐Scale Fabrication of Ordered Binary Colloidal Monolayers with Adjustable Stoichiometries , 2011 .

[183]  Thomas G. Mason,et al.  Colloidal Alphabet Soup: Monodisperse Dispersions of Shape-Designed LithoParticles , 2007 .

[184]  W. Moerner,et al.  Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). , 2015, Angewandte Chemie.

[185]  Ke-Qin Zhang,et al.  In situ observation of colloidal monolayer nucleation driven by an alternating electric field , 2004, Nature.

[186]  D. Pine,et al.  Crystallization of DNA-coated colloids , 2015, Nature Communications.

[187]  Tsunetaka Matsumoto,et al.  Studies on Suspension and Emulsion , 1969 .

[188]  Capillary freezing or complete wetting of hard spheres in a planar hard slit? , 2004, Physical review letters.