I/O-Efficient Planar Separators

We present I/O-efficient algorithms for computing optimal separator partitions of planar graphs. Our main result shows that, given a planar graph $G$ with $N$ vertices and an integer $r > 0$, a vertex separator of size O$(N / \sqrt{r})$ that partitions $G$ into O$(N / r)$ subgraphs of size at most $r$ and boundary size O$(\sqrt{r})$ can be computed in O$(\operatorname{sort}(N))$ I/Os. This bound holds provided that $M \ge 56r \log^2 B$. Together with an I/O-efficient planar embedding algorithm presented in [N. Zeh, I/O-Efficient Algorithms for Shortest Path Related Problems, Ph.D. thesis, School of Computer Science, Carleton University, Ottawa, ON, Canada, 2002], this result is the basis for I/O-efficient solutions to many other fundamental problems on planar graphs, including breadth-first search and shortest paths [L. Arge, G. S. Brodal, and L. Toma, J. Algorithms, 53 (2004), pp. 186-206; L. Arge, L. Toma, and N. Zeh, I/O-efficient algorithms for planar digraphs, in Proceedings of the 15th ACM Symposium on Parallelism in Algorithms and Architectures, ACM, New York, 2003, pp. 85-93], depth-first search [L. Arge et al., J. Graph Algorithms Appl., 7 (2003), pp. 105-129; L. Arge and N. Zeh, I/O-efficient strong connectivity and depth-first search for directed planar graphs, in Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 2003, pp. 261-270], strong connectivity [L. Arge and N. Zeh, I/O-efficient strong connectivity and depth-first search for directed planar graphs, in Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 2003, pp. 261-270], and topological sorting [L. Arge and L. Toma, Simplified external memory algorithms for planar DAGs, in Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Comput. Sci. 3111, Springer-Verlag, Berlin, New York, 2004, pp. 493-503; L. Arge, L. Toma, and N. Zeh, I/O-efficient algorithms for planar digraphs, in Proceedings of the 15th ACM Symposium on Parallelism in Algorithms and Architectures, ACM, New York, 2003, pp. 85-93]. Our second result shows that, given I/O-efficient solutions to these problems, a general separator algorithm for graphs with costs and weights on their vertices [L. Aleksandrov et al., Partitioning planar graphs with costs and weights, in Proceedings of the 4th Workshop on Algorithm Engineering and Experiments, Lecture Notes in Comput. Sci. 2409, Springer-Verlag, Berlin, New York, 2002, pp. 98-107] can be made I/O-efficient. Many classical separator theorems are special cases of this result. In particular, our I/O-efficient version allows the computation of a separator as produced by our first separator algorithm, but without placing any constraints on $r$ in relation to the memory size.

[1]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[2]  Jop F. Sibeyn,et al.  Algorithms for Memory Hierarchies: Advanced Lectures , 2003 .

[3]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[4]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[5]  Jörg-Rüdiger Sack,et al.  I/o-efficient algorithms for shortest path related problems , 2002 .

[6]  Charles E. Leiserson,et al.  Cache-Oblivious Algorithms , 2003, CIAC.

[7]  Ulrich Meyer,et al.  On External-Memory Planar Depth First Search , 2001, J. Graph Algorithms Appl..

[8]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[9]  Norbert Zeh,et al.  I/O-efficient strong connectivity and depth-first search for directed planar graphs , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[10]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[11]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[12]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[13]  Lars Arge,et al.  Simplified External Memory Algorithms for Planar DAGs , 2004, SWAT.

[14]  Norbert Zeh,et al.  An External Memory Data Structure for Shortest Path Queries , 1999, COCOON.

[15]  John R. Gilbert,et al.  Separators in Graphs with Negative and Multiple Vertex Weights , 1999, Algorithmica.

[16]  Frank Harary,et al.  Graph Theory , 2016 .

[17]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[18]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[19]  Hristo Djidjev Partitioning Graphs with Costs and Weights on Vertices: Algorithms and Applications , 1997 .

[20]  Hristo Djidjev,et al.  Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus , 1996, SIAM J. Discret. Math..

[21]  Kamesh Munagala,et al.  I/O-complexity of graph algorithms , 1999, SODA '99.

[22]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[23]  Krzysztof Diks,et al.  Edge Separators of Planar and Outerplanar Graphs with Applications , 1993, J. Algorithms.

[24]  Edward F. Grove,et al.  External-memory graph algorithms , 1995, SODA '95.

[25]  Lars Arge,et al.  The Buffer Tree: A Technique for Designing Batched External Data Structures , 2003, Algorithmica.

[26]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[27]  Lars Arge,et al.  On external-memory MST, SSSP and multi-way planar graph separation , 2004, J. Algorithms.

[28]  Jeffery R. Westbrook,et al.  Maintaining hierarchical graph views , 2000, SODA '00.

[29]  Hristo Djidjev,et al.  Partitioning Planar Graphs with Costs and Weights , 2002, ALENEX.

[30]  John M. Boyer,et al.  Stop minding your p's and q's: a simplified O(n) planar embedding algorithm , 1999, SODA '99.