An unusual feature of end-substituted model carbon (6,0) nanotubes

[1]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[2]  J. Hirschfelder,et al.  The Nature of Intermolecular Forces , 2007 .

[3]  A. Buckingham Permanent and Induced Molecular Moments and Long‐Range Intermolecular Forces , 2007 .

[4]  K. Mikkelsen,et al.  The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes , 2004 .

[5]  Richard A Friesner,et al.  Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. , 2004, Journal of the American Chemical Society.

[6]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[7]  R. Jaffe Quantum Chemistry Study of Fullerene and Carbon Nanotube Fluorination , 2003 .

[8]  A. Goldoni,et al.  Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. , 2003, Journal of the American Chemical Society.

[9]  Z. Luan,et al.  ADSORPTION OF 1, 2-DICHLOROBENZENE FROM WATER TO CARBON NANOTUBES , 2003 .

[10]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Morokuma,et al.  Theoretical Study of Structure and Raman Spectra for Models of Carbon Nanotubes in Their Pristine and Oxidized Forms , 2002 .

[12]  M. Halls,et al.  Chemistry Inside Carbon Nanotubes: the Menshutkin SN2 Reaction , 2002 .

[13]  J. Murray,et al.  Computational characterization of surfaces of model graphene systems , 2001 .

[14]  J. Murray,et al.  Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials , 2001 .

[15]  S. Sinnott,et al.  Separation of Organic Molecular Mixtures in Carbon Nanotubes and Bundles: Molecular Dynamics Simulations , 2001 .

[16]  R. T. Yang,et al.  Carbon nanotubes as superior sorbent for dioxin removal. , 2001, Journal of the American Chemical Society.

[17]  C. Bauschlicher,et al.  High Coverages of Hydrogen on a (10,0) Carbon Nanotube , 2001 .

[18]  S. Karna Electronic and Nonlinear Optical Materials: The Role of Theory and Modeling , 2000 .

[19]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[20]  A. Govindaraj,et al.  Optical limiting in single-walled carbon nanotube suspensions , 2000, cond-mat/0001067.

[21]  Ingolf V. Hertel,et al.  Highly efficient high-order harmonic generation by metallic carbon nanotubes , 1999 .

[22]  D. Sánchez-Portal,et al.  Energetics of the oxidation and opening of a carbon nanotube , 1999, cond-mat/9905419.

[23]  Jin-ming Dong,et al.  Size and helical symmetry effects on the nonlinear optical properties of chiral carbon nanotubes , 1999 .

[24]  Wei Ji,et al.  Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes , 1999 .

[25]  Jinhai Si,et al.  Third-order optical nonlinearity of the carbon nanotubes , 1999 .

[26]  Jin-ming Dong,et al.  Optical properties of carbon nanotubes , 1998 .

[27]  J. Murray,et al.  Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .

[28]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[29]  Parr,et al.  Local temperature in an electronic system. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[31]  D. Dixon,et al.  Density functional theory predictions of polarizabilities and first- and second-order hyperpolarizabilities for molecular systems , 1994 .

[32]  J. Murray,et al.  Molecular surface electrostatic potentials and local ionization energies of Group V–VII hydrides and their anions: Relationships for aqueous and gas-phase acidities , 1993 .

[33]  J. Murray,et al.  Applications of calculated local surface ionization energies to chemical reactivity , 1992 .

[34]  S. Ranganathan,et al.  Radial behavior of the average local ionization energies of atoms , 1991 .

[35]  David N. Beratan,et al.  Electronic Hyperpolarizability and Chemical Structure , 1991 .

[36]  Peter Politzer,et al.  Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity , 1990 .

[37]  J. Murray,et al.  Average local ionization energies computed on the surfaces of some strained molecules , 1990 .

[38]  O. Exner Correlation Analysis of Chemical Data , 1988 .

[39]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[40]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[41]  David J. Williams,et al.  Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities , 1984 .

[42]  R. Stewart Valence Structure from X‐Ray Diffraction Data: Physical Properties , 1972 .

[43]  R. Feynman Forces in Molecules , 1939 .

[44]  Peter Politzer,et al.  Local ionization energy and local polarizability , 2004 .

[45]  J. Murray,et al.  Characterization of Surface Electrostatic Potentials of some (5,5) and (n,1) Carbon and Boron/Nitrogen Model Nanotubes , 2003 .

[46]  J. Murray,et al.  Computational prediction of relative group polarizabilities , 2003 .

[47]  Peter Politzer,et al.  The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes , 2002 .

[48]  J. Murray,et al.  Computational characterization of nucleotide bases: Molecular surface electrostatic potentials and local ionization energies, and local polarization energies , 2001 .

[49]  J. Murray,et al.  Computed molecular surface electrostatic potentials of the nonionic and zwitterionic forms of glycine, histidine, and tetracycline , 2000 .

[50]  J. Murray,et al.  Comparison of density functional and Hartree–Fock average local ionization energies on molecular surfaces , 1998 .

[51]  André Persoons,et al.  THIRD-ORDER NONLINEAR OPTICAL RESPONSE IN ORGANIC MATERIALS : THEORETICAL AND EXPERIMENTAL ASPECTS , 1994 .

[52]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[53]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[54]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[55]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .