Organic- Inorganic Nanoparticle Composite as an Electron Injection/Hole Blocking Layer in Organic Light Emitting Diodes for Large Area Lighting Applications

[1]  F. Gao,et al.  Impacts of the Lattice Strain on Perovskite Light‐Emitting Diodes , 2022, Advanced Energy Materials.

[2]  Yufeng Hu,et al.  Overall Enhanced Performance of Polymer Photodetectors by Co‐Modifying ITO with PEIE and ZnO , 2022 .

[3]  Jiaguo Yu,et al.  CsPbBr3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells , 2021, Advanced science.

[4]  J. D’Haen,et al.  Ultrasonic spray coating of polyethylenimine (ethoxylated) as electron injection and transport layer for organic light emitting diodes: The influence of layer morphology and thickness on the interface physics between polyethylenimine (ethoxylated) and the Al cathode , 2021, Nano Select.

[5]  T. Dongale,et al.  Optimization of ZnO:PEIE as an Electron Transport Layer for Flexible Organic Solar Cells , 2021, Energy & Fuels.

[6]  Raju Lampande,et al.  Technical status of top-emission organic light-emitting diodes , 2021 .

[7]  V. Mikli,et al.  Thickness Effect on Photocatalytic Activity of TiO2 Thin Films Fabricated by Ultrasonic Spray Pyrolysis , 2020, Catalysts.

[8]  Binrui Xu,et al.  High-Performance Quantum Dot-Light-Emitting Diodes with a Polyethylenimine Ethoxylated-modified Emission layer , 2020 .

[9]  S. Iyer,et al.  Spin and doctor-blade coated PEDOT:PSS back electrodes in inverted organic solar cells , 2020 .

[10]  E. Hack,et al.  Towards industrialization of perovskite solar cells using slot die coating , 2020, Journal of Materials Chemistry C.

[11]  I. Nabiev,et al.  Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes , 2020, Scientific Reports.

[12]  W. Deferme,et al.  Velocity and size measurement of droplets from an ultrasonic spray coater using photon correlation spectroscopy and turbidimetry. , 2020, Applied optics.

[13]  Young-Jun You,et al.  In-depth interfacial engineering for efficient indoor organic photovoltaics , 2019, Applied Surface Science.

[14]  Shahzad Ahmad,et al.  Elucidating the Impact of Charge Selective Contact in Halide Perovskite through Impedance Spectroscopy , 2019, Advanced Materials Interfaces.

[15]  David A. Hanifi,et al.  High-mobility, trap-free charge transport in conjugated polymer diodes , 2019, Nature Communications.

[16]  Huangzhong Yu,et al.  PEIE doped ZnO as a tunable cathode interlayer for efficient polymer solar cells , 2019, Applied Surface Science.

[17]  Y. Gogotsi,et al.  Electrochromic Effect in Titanium Carbide MXene Thin Films Produced by Dip‐Coating , 2019, Advanced Functional Materials.

[18]  A. G. Martinez-Lopez,et al.  Stable inks for inkjet printing of TiO2 thin films , 2018, Materials Science in Semiconductor Processing.

[19]  Xiao‐Bo Shi,et al.  Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2018, Advanced Optical Materials.

[20]  Y. Mastai,et al.  Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures , 2018, Scientific Reports.

[21]  G. Cao,et al.  Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process , 2017 .

[22]  Micah Hodgins,et al.  Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes , 2017 .

[23]  Yun Chen,et al.  Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes , 2017 .

[24]  M. Kumar,et al.  Investigation of luminescence and structural properties of ZnO nanoparticles, synthesized with different precursors , 2017 .

[25]  S. Gupta,et al.  Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells , 2017, Scientific Reports.

[26]  G. Hernández-Sosa,et al.  Degradation Mechanisms in Organic Light-Emitting Diodes with Polyethylenimine as a Solution-Processed Electron Injection Layer. , 2017, ACS applied materials & interfaces.

[27]  B. Liu,et al.  Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation , 2016, Scientific Reports.

[28]  W. Brütting,et al.  Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping , 2016 .

[29]  J. D’Haen,et al.  Layer formation and morphology of ultrasonic spray coated polystyrene nanoparticle layers , 2016 .

[30]  M. Suh,et al.  Conjugated Polyelectrolyte Hybridized ZnO Nanoparticles as a Cathode Interfacial Layer for Efficient Polymer Light‐Emitting Diodes , 2015 .

[31]  Abdelmalek Bouzid,et al.  Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method , 2015 .

[32]  Morteza Eslamian,et al.  Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating , 2015 .

[33]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[34]  W. Maes,et al.  Ultrasonic spray coating as deposition technique for the light-emitting layer in polymer LEDs , 2015 .

[35]  Martin Weis,et al.  Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode , 2015 .

[36]  W. Choi,et al.  Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO , 2015, Scientific Reports.

[37]  K. Alameh,et al.  High-efficiency inverted polymer solar cells controlled by the thickness of polyethylenimine ethoxylated (PEIE) interfacial layers. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[38]  G. Jabbour,et al.  Ethoxylated polyethylenimine as an efficient electron injection layer for conventional and inverted polymer light emitting diodes , 2014 .

[39]  Kwon-Hyeon Kim,et al.  Langevin and Trap‐Assisted Recombination in Phosphorescent Organic Light Emitting Diodes , 2014 .

[40]  W. Jaegermann,et al.  Investigation of solution-processed ultrathin electron injection layers for organic light-emitting diodes. , 2014, ACS applied materials & interfaces.

[41]  H. Steinrück,et al.  Calcium Thin Film Growth on Polyfluorenes: Interface Structure and Energetics , 2014 .

[42]  T. Wen,et al.  Role of self-assembled tetraoctylammonium bromide on various conjugated polymers in polymer light-emitting diodes , 2014 .

[43]  K. H. Yeoh,et al.  High efficiency solution processed fluorescent yellow organic light-emitting diode through fluorinated alcohol treatment at the emissive layer/cathode interface , 2014 .

[44]  T. S. Alstrøm,et al.  Process optimization of ultrasonic spray coating of polymer films. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[45]  Jong‐Lam Lee,et al.  Origin of gap states in the electron transport layer of organic solar cells , 2013 .

[46]  Tobias D. Schmidt,et al.  Device efficiency of organic light‐emitting diodes: Progress by improved light outcoupling , 2013 .

[47]  Jun Yeob Lee,et al.  Hybrid white organic light-emitting diodes of small molecule and polymer emitters , 2012 .

[48]  K. Ocakoglu,et al.  EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals , 2012 .

[49]  Yanchun Han,et al.  Inhibition of dewetting of thin polymer films , 2012 .

[50]  E. Erdem,et al.  Investigation of intrinsic defects in core-shell structured ZnO nanocrystals , 2012 .

[51]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[52]  Barry P Rand,et al.  Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells. , 2011, ACS applied materials & interfaces.

[53]  G. Boschloo,et al.  Energy alignment and surface dipoles of rylene dyes adsorbed to TiO2 nanoparticles. , 2011, Physical chemistry chemical physics : PCCP.

[54]  H. Steinrück,et al.  Toward well-defined metal-polymer interfaces: temperature-controlled suppression of subsurface diffusion and reaction at the calcium/poly(3-hexylthiophene) interface. , 2010, Journal of the American Chemical Society.

[55]  Alex B. F. Martinson,et al.  Anode Interfacial Tuning via Electron‐Blocking/Hole‐Transport Layers and Indium Tin Oxide Surface Treatment in Bulk‐Heterojunction Organic Photovoltaic Cells , 2010 .

[56]  Abdelatif Belhadj Mohamed,et al.  Enhanced performance of a CuPc: PCBM based solar cell using bathocuproine BCP or nanostructured TiO2 as hole‐blocking layer , 2010 .

[57]  Zhenghong Lu,et al.  Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides , 2009 .

[58]  Wei Zhao,et al.  Formation of the calcium/poly(3-hexylthiophene) interface: structure and energetics. , 2009, Journal of the American Chemical Society.

[59]  Michael Grätzel,et al.  High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. , 2009, Nano letters.

[60]  M. Liberatore,et al.  Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells , 2009 .

[61]  M. Adnane,et al.  Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films , 2008 .

[62]  T. Marks,et al.  High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells , 2008 .

[63]  Mark E. Thompson,et al.  New Thermally Cross-Linkable Polymer and Its Application as a Hole-Transporting Layer for Solution Processed Multilayer Organic Light Emitting Diodes , 2007 .

[64]  D. Basak,et al.  Effect of thickness on the structural, electrical and optical properties of ZnO films , 2007 .

[65]  J. Bisquert,et al.  Capacitance-voltage characteristics of organic light-emitting diodes varying the cathode metal: Implications for interfacial states , 2007 .

[66]  André Moliton,et al.  How to model the behaviour of organic photovoltaic cells , 2006 .

[67]  J. Bisquert,et al.  Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes , 2006 .

[68]  Wolfgang Brütting,et al.  Physics of Organic Semiconductors: Second Edition , 2005 .

[69]  R. Friend,et al.  Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT:PSS’ , 2005 .

[70]  Yang Yang,et al.  Capacitance–voltage characterization of polymer light-emitting diodes , 2005 .

[71]  Man Hoi Wong,et al.  How to make ohmic contacts to organic semiconductors. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[73]  Wolfgang Brütting,et al.  Device physics of organic light-emitting diodes based on molecular materials , 2001 .

[74]  A. Marmur Wetting on Real Surfaces , 1999, Journal of Imaging Science and Technology.

[75]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[76]  Kristiaan Neyts,et al.  Simulation of light emission from thin-film microcavities , 1998 .

[77]  P. Kofstad Defects and transport properties of metal oxides , 1995 .

[78]  B. D. Washo Rheology and modeling of the spin coating process , 1977 .

[79]  R. Bube Trap Density Determination by Space‐Charge‐Limited Currents , 1962 .

[80]  Ruidong Xia,et al.  Highly efficient polymer light-emitting devices based on sodium compounds electron injection layer , 2021, Displays.

[81]  Zhenghong Lu,et al.  Interface Engineering in Organic Electronics: Energy‐Level Alignment and Charge Transport , 2020, Small Science.

[82]  B. Ruhstaller,et al.  Outcoupling technologies : concepts, simulation, and implementation , 2018 .

[83]  Jun Yeob Lee,et al.  Solution Processed p-Doped Hole Transport Layer for Polymer Light-Emitting Diodes , 2012 .

[84]  W. R. Salaneck,et al.  Photo‐oxidation of poly(p‐phenylenevinylene) , 1997 .

[85]  M. Lampert,et al.  Chapter 1 Current Injection in Solids: The Regional Approximation Method , 1970 .