Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results. We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 x 10(-6) M-circle dot yr(-1) based on the (CO)-C-12 lines. The estimated (CO)-C-12/(CO)-C-13 ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 x 10(-5), which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 x 10(-6), and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 x 10(-6), and distribution of CN in W Aql's circumstellar envelope using ground-based data. We find an SiO abundance of 3 x 10(-6), and an NH3 abundance of 1.7 x 10(-5), confined to a small envelope. If we include uncertainties in the adopted circumstellar model - in the adopted abundance distributions, etc. - the errors in the abundances are of the order of factors of a few. The data also suggest that, in terms of HCN, S-type and M-type AGB stars are similar, and in terms of H2O, S-type AGB stars are more like C-type than M-type AGB stars. We detect excess blue-shifted emission in several molecular lines, possibly due to an asymmetric outflow. Conclusions. The estimated abundances of circumstellar HCN, SiO and H2O place W Aql in between M-and C-type AGB stars, i.e., the abundances are consistent with an S-type classification.

[1]  K. Menten,et al.  The wind of W Hydrae as seen by Herschel - II. The molecular envelope of W Hydrae , 2014, 1409.0396.

[2]  J. Bieging,et al.  The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type , 2013, 1301.2129.

[3]  J. Blommaert,et al.  Large-scale environments of binary AGB stars probed by Herschel - I. Morphology statistics and case studies of R Aquarii and W Aquilae , 2012, 1211.3595.

[4]  A. Gim'enez,et al.  The first INTEGRAL-OMC catalogue of optically variable sources , 2012, 1210.0821.

[5]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[6]  K. Menten,et al.  Herschel/HIFI observations of O-rich AGB stars : molecular inventory ⋆ , 2011, 1111.5156.

[7]  B. Balick,et al.  Carbon isotopic abundance ratios in S-type stars , 2011 .

[8]  R. Waters,et al.  A chemical inventory of the S-type AGB star χ Cygni based on Herschel/HIFI observations of circumstellar line emission. The importance of non-LTE chemical processes in a dynamical region , 2011 .

[9]  G. Olofsson,et al.  Imaging the circumstellar dust around AGB stars with PolCor , 2011, 1105.5405.

[10]  Belgium,et al.  THE WIDESPREAD OCCURRENCE OF WATER VAPOR IN THE CIRCUMSTELLAR ENVELOPES OF CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS: FIRST RESULTS FROM A SURVEY WITH HERSCHEL/HIFI , 2010, 1012.3456.

[11]  A. Faure,et al.  The rotational excitation of HCN and HNC by He: temperature dependence of the collisional rate coefficients , 2010 .

[12]  K. Menten,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae , 2010, 1008.1083.

[13]  K. Menten,et al.  Herschel/HIFI deepens the circumstellar NH3 enigma , 2010, 1007.1413.

[14]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[15]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[16]  K. Menten,et al.  Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri - II. In-depth non-LTE chemical abundance analysis , 2010, 1004.1914.

[17]  G. Rybicki,et al.  MODELING MOLECULAR HYPERFINE LINE EMISSION , 2010, 1004.1617.

[18]  S. Hoefner,et al.  Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of solar-metallicity wind models , 2009, 1209.4590.

[19]  J. Tennyson,et al.  A variationally computed T = 300 K line list for NH3. , 2009, The journal of physical chemistry. A.

[20]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[21]  H. Olofsson,et al.  Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances , 2009, 0903.1672.

[22]  S. Kwok,et al.  Circumstellar water vapour in M-type AGB stars: constraints from H2O(110-101) lines obtained with Odin , 2008, 0812.1338.

[23]  H. Olofsson,et al.  On the reliability of mass-loss-rate estimates for AGB stars , 2008, 0806.0517.

[24]  F. V. Leeuwen,et al.  AGB variables and the Mira period–luminosity relation , 2008, 0801.4465.

[25]  H. Olofsson,et al.  Circumstellar water vapour in M-type AGB stars: radiative transfer models, abundances, and predictions for HIFI , 2008, 0801.0971.

[26]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[27]  H. Olofsson The study of evolved stars with ALMA , 2008 .

[28]  M. Dubernet,et al.  Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2 , 2007, 0708.0345.

[29]  B. Jonkheid,et al.  Photoprocesses in protoplanetary disks. , 2006, Faraday discussions.

[30]  C. Balança,et al.  Rotational excitation of SiO by collisions with helium , 2006 .

[31]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[32]  H. Olofsson,et al.  Mass-loss properties of S-stars on the AGB , 2006, astro-ph/0605664.

[33]  S. Kwok,et al.  Observations of the Circumstellar Water 110→101 and Ammonia 10→00 Lines in IRC +10216 by the Odin Satellite , 2006 .

[34]  F. Herwig Evolution of Asymptotic Giant Branch Stars , 2005 .

[35]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[36]  S. Kwok,et al.  W Hya through the eye of Odin. Satellite observations of circumstellar submillimetre H2O line emission , 2005, astro-ph/0505224.

[37]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[38]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[39]  S. Price,et al.  A Uniform Database of 2.4-45.4 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer , 2003 .

[40]  "Thermal" SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics , 2003, astro-ph/0302179.

[41]  L. Nyman,et al.  Molecular Abundances in Carbon—Rich Circumstellar Envelopes , 2002, astro-ph/0209526.

[42]  M. Juvela,et al.  Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics , 2002, astro-ph/0208503.

[43]  F. Kerschbaum,et al.  Mass loss rates of a sample of irregular and semiregular M-type AGB-variables , 2002 .

[44]  H. Olofsson,et al.  Probing the Mass Loss Rate History of Carbon Stars Using CO Line and Dust Continuum Emission , 2002, astro-ph/0206078.

[45]  H. Olofsson,et al.  Models of circumstellar molecular radio line emission - Mass loss rates for a sample of bright carbon stars , 2001, astro-ph/0101477.

[46]  P. Gensheimer,et al.  Submillimeter- and Millimeter-Wavelength Observations of SiO and HCN in Circumstellar Envelopes of AGB Stars , 2000 .

[47]  J. Cernicharo,et al.  A λ2 mm molecular line survey of the C-star envelope IRC+10216 , 2000 .

[48]  P. Murdin Onsala Space Observatory , 2000 .

[49]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[50]  S. Chandra,et al.  Einstein A-coefficients for vib-rotational transitions in CO , 1996 .

[51]  H. J. Habing,et al.  Circumstellar envelopes and Asymptotic Giant Branch stars , 1996 .

[52]  J. Kastner Mass-loss rates for IRAS-bright red giants - A revised model of circumstellar CO emission , 1992 .

[53]  G. J. Matthews,et al.  Asymptotic-giant-branch stars , 1992, Nature.

[54]  A. Tielens,et al.  Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells , 1992 .

[55]  R. Sahai A new self-consistent model of circumstellar CO emission for deriving mass-loss rates in red giants. I, The carbon-rich star U Camelopardalis , 1990 .

[56]  P. Schilke,et al.  A recalibration of the interstellar ammonia thermometer , 1988 .

[57]  P. J. Huggins,et al.  The photodissociation of CO in circumstellar envelopes , 1988 .

[58]  G. Knapp,et al.  Mass Loss from Evolved Stars. VII. OH Maser Shell Radii and Mass-Loss Rates for OH/IR Stars , 1987 .

[59]  Mark R. Morris,et al.  MECHANISMS FOR MASS LOSS FROM COOL STARS. , 1987 .

[60]  I. Glass,et al.  A period–luminosity relation for Mira variables in the Large Magellanic Cloud , 1981, Nature.

[61]  P. C. Keenan,et al.  Spectral types of S and SC stars on the revised MK system. , 1980 .

[62]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[63]  J. Muenter,et al.  Electric Dipole Moment of SiO and GeO , 1970 .