Non-body-fitted Cartesian-mesh simulation of highly turbulent flows using multi-relaxation-time lattice Boltzmann method

This paper presents a lattice Boltzmann method (LBM) based study aimed at numerical simulation of highly turbulent and largely inclined flow around obstacles of curved geometry using non-body-fitted Cartesian meshes. The approach features (1) combining the interpolated bounce-back scheme with the LBM of multi-relaxation-time (MRT) type to enable the use of simple Cartesian mesh for the flow cases even with complex geometries; and (2) incorporating the Spalart-Allmaras (SA) turbulence model into LBM in order to represent the turbulent flow effect. The numerical experiments are performed corresponding to flows around an NACA0012 airfoil at Re=5x10^5 and around a flat plate at Re=2x10^4, respectively. The agreement between all simulation results obtained from this study and the data provided by other literature demonstrates the reliability of the enhanced LBM proposed in this paper for simulating, simply on Cartesian meshes, complex flows that may involve bodies of curved boundary, high Reynolds number, and large angle of attack.

[1]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[2]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[3]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[4]  Taro Imamura,et al.  Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method , 2005 .

[5]  Sharath S. Girimaji,et al.  LES of turbulent square jet flow using an MRT lattice Boltzmann model , 2006 .

[6]  David P. Lockard,et al.  Evaluation of PowerFLOW for Aerodynamic Applications , 2002 .

[7]  Wei Shyy,et al.  Regular Article: An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method , 1999 .

[8]  Chengwen Zhong,et al.  Numerical simulation of compressible turbulent flow via improved gas‐kinetic BGK scheme , 2011 .

[9]  Simulation of Turbulent Flow in a Cyclonic Separator with Lattice-Boltzmann Method , 2006 .

[10]  Michael Breuer,et al.  Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence , 2003 .

[11]  O. Schmidt,et al.  Investigation of the LES WALE turbulence model within the lattice Boltzmann framework , 2010, Comput. Math. Appl..

[12]  Shi Bao-Chang,et al.  Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method , 2006 .

[13]  Taro Imamura,et al.  Flow Simulation Around an Airfoil Using Lattice Boltzmann Method on Generalized Coordinates , 2004 .

[14]  NILS KRUSE,et al.  Wavy wall effects on turbulence production and large-scale modes , 2006 .

[15]  Swen Noelting,et al.  Simulation of Flow Over a 3-Element Airfoil Using a Lattice-Boltzmann Method , 2008 .

[16]  S. Deck,et al.  Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations , 2002 .

[17]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[18]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[19]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[20]  Ilya Staroselsky,et al.  Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm , 2004 .

[21]  R. Shock,et al.  Lattice Boltzmann Simulations of the DLR -F4, DLR -F6 and Variants , 2008 .

[22]  Wei Shyy,et al.  A Unified Boundary Treatment in Lattice Boltzmann Method , 2002 .

[23]  Yan Peng,et al.  Application of Taylor series expansion and Least-squares-based lattice Boltzmann method to simulate turbulent flows , 2006 .

[24]  Jonas Tölke,et al.  Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA , 2009, Comput. Vis. Sci..

[25]  C. Teixeira INCORPORATING TURBULENCE MODELS INTO THE LATTICE-BOLTZMANN METHOD , 1998 .

[26]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Sauro Succi,et al.  Multiscale lattice Boltzmann schemes with turbulence modeling , 2001 .

[28]  lt,et al.  Application of Lattice Boltzmann Method to Simulation of Compressible Turbulent Flow , 2010 .

[29]  Richard Shock,et al.  Recent results on two-dimensional airfoils using a lattice Boltzmann-based algorithm , 2002 .