A Linear Logical Framework

We present the linear type theory LLF as the formal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of Mini-ML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cut-elimination.

[1]  Frank Pfenning,et al.  A Linear Spine Calculus , 2003, J. Log. Comput..

[2]  Frank Pfenning,et al.  The Practice of Logical Frameworks , 1996, CAAP.

[3]  F. Pfenning Logic programming in the LF logical framework , 1991 .

[4]  Luís Damas,et al.  Type assignment in programming languages , 1984 .

[5]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[6]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[7]  Dominique Clément,et al.  A simple applicative language: mini-ML , 1986, LFP '86.

[8]  Mads Tofte,et al.  Type Inference for Polymorphic References , 1990, Inf. Comput..

[9]  Anne Sjerp Troelstra Strong normalization for typed terms with surjective pairing , 1986, Notre Dame J. Formal Log..

[10]  J. S. Hodas Logic programming in intuitionistic linear logic: theory, design, and implementation , 1995 .

[11]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[12]  Dale Miller,et al.  Logic Programming in a Fragment of Intuitionistic Linear Logic , 1994, Inf. Comput..

[13]  Carl A. Gunter,et al.  The machine-assisted proof of programming language properties , 1996 .

[14]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[15]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[16]  T. Coquand An algorithm for testing conversion in type theory , 1991 .

[17]  Matthias Felleisen,et al.  A Syntactic Approach to Type Soundness , 1994, Inf. Comput..

[18]  Frank Pfenning,et al.  Elf: A Meta-Language for Deductive Systems (System Descrition) , 1994, CADE.

[19]  Philip Wadler,et al.  Linear Types can Change the World! , 1990, Programming Concepts and Methods.

[20]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[21]  Xavier Leroy,et al.  Polymorphic type inference and assignment , 1991, POPL '91.

[22]  Jawahar Chirimar,et al.  Proof theoretic approach to specification languages , 1995 .

[23]  J. H. Geuvers Logics and type systems , 1993 .

[24]  Dale Miller,et al.  From operational semantics to abstract machines: preliminary results , 1990, LISP and Functional Programming.

[25]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[26]  Frank Pfenning Structural Cut Elimination in Linear Logic. , 1994 .

[27]  Dale Miller,et al.  A multiple-conclusion meta-logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[28]  Jan Friso Groote,et al.  Proceedings of the International Conference on Typed Lambda Calculi and Applications , 1993 .

[29]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[30]  Frank Pfenning,et al.  Linear higher-order pre-unification , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[31]  Robin Milner,et al.  Definition of standard ML , 1990 .

[32]  Frank Pfenning,et al.  Natural Semantics and Some of Its Meta-Theory in Elf , 1992, ELP.

[33]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[34]  Amy P. Felty,et al.  Encoding dependent types in an intuitionistic logic , 1991 .

[35]  Frank Pfenning,et al.  A Proof of the Church-Rosser Theorem and its Representation in a Logical Framework , 1992 .

[36]  P. Lincoln,et al.  Operational aspects of linear lambda calculus , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[37]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[38]  Robert Harper,et al.  A Simplified Account of Polymorphic References , 1994, Inf. Process. Lett..

[39]  David B. MacQueen,et al.  The Definition of Standard ML (Revised) , 1997 .

[40]  Frank Pfenning,et al.  Implementing the Meta-Theory of Deductive Systems , 1992, CADE.

[41]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[42]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..