Nonlinear manifold representations for functional data

For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which we modify to address functional data settings. In simulations and applications, we study examples of functional data which lie on a manifold and validate the superior behavior of manifold mean and functional manifold components over traditional cross-sectional mean and functional principal components. We also include consistency proofs for our estimators under certain assumptions.

[1]  H. Müller,et al.  Nonparametric Regression Analysis of Growth Curves , 1984 .

[2]  T. Gasser,et al.  Self‐modelling warping functions , 2004 .

[3]  T. Gasser,et al.  Synchronizing sample curves nonparametrically , 1999 .

[4]  Anne Lohrli Chapman and Hall , 1985 .

[5]  Stephan Huckemann,et al.  Inference on 3D Procrustes Means: Tree Bole Growth, Rank Deficient Diffusion Tensors and Perturbation Models , 2010, 1002.0738.

[6]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[7]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[8]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[9]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[10]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[11]  I. Holopainen Riemannian Geometry , 1927, Nature.

[12]  Ravi S. Kulkarni,et al.  Review: Sigurdur Helgason, Differential geometry, Lie groups and symmetric spaces , 1980 .

[13]  R. Ash,et al.  Topics in stochastic processes , 1975 .

[14]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. S. Marron,et al.  Analysis of nonlinear modes of variation for functional data , 2007 .

[16]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[17]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[18]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[19]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[20]  K. J. Utikal,et al.  Inference for Density Families Using Functional Principal Component Analysis , 2001 .

[21]  P. Bickel,et al.  Local polynomial regression on unknown manifolds , 2007, 0708.0983.

[22]  U. Grenander Stochastic processes and statistical inference , 1950 .

[23]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[24]  R. D. Tuddenham,et al.  Physical growth of California boys and girls from birth to eighteen years. , 1954, Publications in child development. University of California, Berkeley.

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  David L. Donoho,et al.  Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.

[27]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[30]  A. U.S.,et al.  Nonparametric maximum likelihood estimation of the structural mean of a sample of curves , 2005 .

[31]  H. Müller,et al.  Time-synchronized clustering of gene expression trajectories. , 2008, Biostatistics.

[32]  John A. Rice,et al.  Displaying the important features of large collections of similar curves , 1992 .

[33]  H. Müller,et al.  Time ordering of gene coexpression. , 2006, Biostatistics.

[34]  Fang Yao,et al.  Functional Additive Models , 2008 .