Using Renyi's Information and Wavelets for Target Detection: An Application to Mammograms

Abstract.In this paper we present a multi-scale method for the detection of small targets embedded in noisy background. The multi-scale representation is built using a weighted undecimated discrete wavelet transform. The method, in essence, is based on the maximisation of information available at each resolution level of the representation. We show that such objective can be achieved by maximising Renyi’s information. This approach allows us to determine an adaptive threshold useful for discriminating, at each scale, between wavelet coefficients representing targets and those representing background noise. Eventually, avoiding inverse transformation, scale-dependent estimates are combined according to a majority vote strategy. The proposed technique is experimented on a standard data set of mammographic images.

[1]  G. Anthony Gorry,et al.  A SYSTEM FOR COMPUTER-AIDED DIAGNOSIS , 1967 .

[2]  Ralph Highnam,et al.  Computing the scatter component of mammographic images , 1994, IEEE Trans. Medical Imaging.

[3]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[4]  Joachim Dengler,et al.  Segmentation of microcalcifications in mammograms , 1991, IEEE Trans. Medical Imaging.

[5]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[7]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[8]  Nico Karssemeijer,et al.  ADAPTIVE NOISE EQUALIZATION AND RECOGNITION OF MICROCALCIFICATION CLUSTERS IN MAMMOGRAMS , 1993 .

[9]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[10]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[11]  Angelo Chianese,et al.  A system for computer-aided mammography , 1997 .

[12]  Bart M. ter Haar Romeny,et al.  Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.

[13]  D. Brzakovic,et al.  MAMMOGRAM SCREENING USING MULTIRESOLUTION-BASED IMAGE SEGMENTATION , 1993 .

[14]  Nicolaos B. Karayiannis,et al.  Detection of microcalcifications in digital mammograms using wavelets , 1998, IEEE Transactions on Medical Imaging.

[15]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[16]  Robin N. Strickland,et al.  Wavelet transforms for detecting microcalcifications in mammograms , 1996, IEEE Trans. Medical Imaging.

[17]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[18]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[19]  D. Dance,et al.  Automatic computer detection of clustered calcifications in digital mammograms , 1990, Physics in medicine and biology.

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  Michael Brady,et al.  A Representation for Mammographic Image Processing , 1995, CVRMed.

[23]  H. Vincent Poor,et al.  Detection of Stochastic Processes , 1998, IEEE Trans. Inf. Theory.

[24]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[25]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[27]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.