Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids

In this paper we present a set of efficient algorithms for detection and identification of discontinuities in high dimensional space. The method is based on extension of polynomial annihilation for discontinuity detection in low dimensions. Compared to the earlier work, the present method poses significant improvements for high dimensional problems. The core of the algorithms relies on adaptive refinement of sparse grids. It is demonstrated that in the commonly encountered cases where a discontinuity resides on a small subset of the dimensions, the present method becomes ''optimal'', in the sense that the total number of points required for function evaluations depends linearly on the dimensionality of the space. The details of the algorithms will be presented and various numerical examples are utilized to demonstrate the efficacy of the method.

[1]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[2]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[3]  Michael Griebel,et al.  Data Mining with Sparse Grids , 2001, Computing.

[4]  Michael Griebel,et al.  Dimension-wise integration of high-dimensional functions with applications to finance , 2010, J. Complex..

[5]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[6]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[7]  Markus Hegland,et al.  The combination technique and some generalisations , 2007 .

[8]  Irwin Sobel,et al.  An Isotropic 3×3 image gradient operator , 1990 .

[9]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[10]  Rick Archibald,et al.  Polynomial Fitting for Edge Detection in Irregularly Sampled Signals and Images , 2005, SIAM J. Numer. Anal..

[11]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[12]  Michael Griebel,et al.  Principal manifold learning by sparse grids , 2009, Computing.

[13]  Herbert Freeman,et al.  Machine Vision for Three-Dimensional Scenes , 1990 .

[14]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[15]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[16]  Anne Gelb,et al.  Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter , 2006, J. Sci. Comput..

[17]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[18]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[19]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[20]  Rick Archibald,et al.  Determining the locations and discontinuities in the derivatives of functions , 2008 .

[21]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[22]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[23]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[24]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[25]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[26]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[27]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[28]  Baskar Ganapathysubramanian,et al.  Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method , 2007, J. Comput. Phys..

[29]  Dongbin Xiu,et al.  Discontinuity detection in multivariate space for stochastic simulations , 2009, J. Comput. Phys..

[30]  Baskar Ganapathysubramanian,et al.  A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach , 2008, J. Comput. Phys..

[31]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[32]  Dongbin Xiu,et al.  Galerkin method for wave equations with uncertain coefficients , 2008 .

[33]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Michael Griebel,et al.  Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences , 1998, Computing.

[35]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[36]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[37]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..