Nonlinear Adaptive H∞ Output Feedback Tracking Control for Robotic Systems

Abstract This paper presents a solution to the tracking control problem of robotic systems in the presence of exogenous disturbances and model uncertainty with partial state information. The solution yields a Linear Matrix Inequalities (LMIs) based tracking output feedback controller. The main contribution of this paper lies in its particular approach which facilitates an application of the linear H ∞ control theory without linearizing the underlying system. This yields a relatively simple and elegant design procedure. In addition, a relatively low gain controller is achieved. Simulation results of application this control algorithm in a two-degree of freedom robot demonstrates the design procedure feasibility.

[1]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[2]  Roberto Horowitz,et al.  Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators , 1990, Int. J. Robotics Res..

[3]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[4]  Hassan K. Khalil,et al.  Adaptive output feedback control of robot manipulators using high-gain observer , 1997 .

[5]  A. Zemouche,et al.  Observer Design for Nonlinear Systems: An Approach Based on the Differential Mean Value Theorem. , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  Mohamed Darouach,et al.  Disturbance Attenuation and Trajectory Tracking via a Reduced-order Output Feedback Controller for Robot Manipulators , 1998, Autom..

[7]  Marco A. Arteaga Robot control and parameter estimation with only joint position measurements , 2003, Autom..

[8]  Bor-Sen Chen,et al.  Nonlinear mixed H 2/H ∞ control for robust tracking design of robotic systems , 1997 .

[9]  Uri Shaked,et al.  An LPD approach to robust H2 and H∞ static output-feedback design , 2003, IEEE Trans. Autom. Control..

[10]  T. Ravichandran,et al.  Stability and robustness of a class of nonlinear controllers for robot manipulators , 2004, Proceedings of the 2004 American Control Conference.

[11]  Leonardo Acho,et al.  Non-linear measurement feedback H8-control of time-periodic systems with application to tracking control of robot manipulators , 2001 .

[12]  Van,et al.  L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback H∞ Control , 2004 .

[13]  Frank L. Lewis,et al.  A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems , 1997, Autom..

[14]  Rafael Kelly,et al.  Semiglobal stability of saturated linear PID control for robot manipulators , 2003, Autom..

[15]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[16]  Tae-Yong Kuc,et al.  An adaptive PID learning control of robot manipulators , 2000, Autom..

[17]  E. S. Shin,et al.  Robust output feedback control of robot manipulators using high-gain observer , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[18]  Masayoshi Tomizuka,et al.  An adaptive output feedback controller for robot arms: stability and experiments , 1996, Autom..

[19]  A. Krener Necessary and sufficient conditions for nonlinear worst case (H∞) control and estimation , 1997 .

[20]  Euntai Kim,et al.  Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic , 2004, IEEE Trans. Fuzzy Syst..

[21]  A. Schaft On a state space approach to nonlinear H ∞ control , 1991 .

[22]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[23]  A. Schaft L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control , 1992 .

[24]  J. Park,et al.  Nonlinear H, Control of Robotic Manipulator , 2000 .