Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids

[1]  Peter J. Diggle,et al.  Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern , 1986, Journal of Neuroscience Methods.

[2]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[3]  S. Edwards,et al.  Theory of powders , 1989 .

[4]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[5]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[6]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[7]  Mikhail J. Atallah,et al.  Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.

[8]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[9]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[10]  Patrizio Frosini,et al.  On the use of size functions for shape analysis , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[11]  T. Hales The Kepler conjecture , 1998, math/9811078.

[12]  T Aste,et al.  Geometrical structure of disordered sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[14]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[15]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[16]  D Stoyan,et al.  Morphological Characterization of Point Patterns , 2005, Biometrical journal. Biometrische Zeitschrift.

[17]  V. Robins Betti number signatures of homogeneous Poisson point processes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  E. D. Ford,et al.  Statistical inference using the g or K point pattern spatial statistics. , 2006, Ecology.

[19]  T. Aste,et al.  An invariant distribution in static granular media , 2006, cond-mat/0612063.

[20]  Dietrich Stoyan,et al.  Statistical verification of crystallization in hard sphere packings under densification , 2006 .

[21]  N. N. Medvedev,et al.  Polytetrahedral nature of the dense disordered packings of hard spheres. , 2007, Physical review letters.

[22]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[23]  Marina L. Gavrilova,et al.  Shapes of Delaunay Simplexes and Structural Analysis of Hard Sphere Packings , 2008, Generalized Voronoi Diagram.

[24]  G. Carlsson,et al.  Statistical topology via Morse theory, persistence and nonparametric estimation , 2009, 0908.3668.

[25]  Edoardo M. Airoldi,et al.  Geometric Representations of Random Hypergraphs , 2009 .

[26]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[27]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[28]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[29]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[30]  U. Gasser,et al.  Melting of crystals in two dimensions. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Afra Zomorodian,et al.  Computational topology , 2010 .

[32]  Matthew Kahle,et al.  Computational topology for configuration spaces of hard disks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Maret,et al.  Comparison of 2D melting criteria in a colloidal system , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Peter J. Diggle,et al.  Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .

[35]  A Sheppard,et al.  Geometrical frustration in amorphous and partially crystallized packings of spheres. , 2013, Physical review letters.

[36]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[37]  W. Losert,et al.  Automatic sorting of point pattern sets using Minkowski functionals. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  W. Losert,et al.  Cluster Analysis of Protein Point Pattern Sets using Minkowski Functionals , 2013, 1303.1121.

[39]  M. Kramár,et al.  Quantifying force networks in particulate systems , 2013, 1311.0424.

[40]  Vanessa Robins,et al.  Morse theory and persistent homology for topological analysis of 3D images of complex materials , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[41]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[42]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[43]  Diego Maza,et al.  Topological analysis of tapped granular media using persistent homology. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[45]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[46]  Silke Henkes,et al.  The Statistical Physics of Athermal Materials , 2014, 1404.1854.

[47]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[48]  Olaf Delgado-Friedrichs,et al.  Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Probabilistic Fréchet means for time varying persistence diagrams , 2013, 1307.6530.

[50]  R. Ho Algebraic Topology , 2022 .