Early age activation of slag concrete for applications in hollowcore slabs

Prestressed hollowcore slabs are potentially critical segments in the construction sequence of a precast concrete structure, in which very early age strength is vital for ensuring factory productiv...

[1]  Hashim Abdul Razak,et al.  The effect of chemical activators on early strength of ordinary Portland cement-slag mortars , 2010 .

[2]  G. K. Moir,et al.  Degrees of reaction of the slag in some blends with Portland cements , 1996 .

[3]  Huang Yi,et al.  An Overview of Utilization of Steel Slag , 2012 .

[4]  D. Roy,et al.  Early activation and properties of slag cement , 1990 .

[5]  M. Cyr,et al.  Mineral Admixtures in Mortars. Quantification of the Physical Effects of Inert Materials on Short-Term Hydration , 2005 .

[6]  Fevziye Aköz,et al.  Effect of curing conditions on the mortars with and without GGBFS , 2008 .

[7]  R. West,et al.  Activation of slag: a comparative study of cement, lime, calcium sulfate, GGBS fineness and temperature , 2021 .

[8]  Tze Yang Darren Lim,et al.  Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag , 2013 .

[9]  K. Scrivener,et al.  The influence of sodium salts and gypsum on alite hydration , 2015 .

[10]  V. Rajinikanth,et al.  Improved processing of blended slag cement through mechanical activation , 2004 .

[11]  Steve Millard,et al.  Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies , 2006 .

[12]  S. Guessasma,et al.  Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste , 2017 .

[13]  R. Trettin,et al.  Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems , 2005 .

[14]  R. West,et al.  Activated slag as partial replacement of cement mortars: Effect of temperature and a novel admixture , 2019, Construction and Building Materials.

[15]  R. Siddique,et al.  Use of iron and steel industry by-product (GGBS) in cement paste and mortar , 2012 .

[16]  R. West,et al.  Activation of Slag as Partial Replacement of Cement Mortar: Effects of Superfine GGBS, Temperature, and Admixture , 2020 .

[17]  Dongxu Li,et al.  Studies on Portland cement with large amount of slag , 2000 .

[18]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .

[19]  Ravindra K. Dhir,et al.  Chloride binding in GGBS concrete , 1996 .

[20]  Fathollah Sajedi Mechanical activation of cement–slag mortars , 2012 .

[21]  G. Sant,et al.  The influence of sodium and potassium hydroxide on alite hydration: Experiments and simulations , 2012 .

[22]  M. Zając,et al.  The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends , 2014 .

[23]  J. Escalante,et al.  Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions , 2001 .

[24]  Sanjay Kumar,et al.  Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement , 2008 .

[25]  Yan Yao,et al.  A study on creep and drying shrinkage of high performance concrete , 2001 .

[26]  H. Donza,et al.  The effect of w/b and temperature on the hydration and strength of blastfurnace slag cements , 2016 .

[27]  Ellis Gartner,et al.  Influence of tertiary alkanolamines on Portland cement hydration , 1993 .

[28]  Verónica Calderón,et al.  Durability behavior of steelmaking slag masonry mortars , 2016 .

[29]  G. Saoût,et al.  The effect of temperature on the hydration of composite cements containing limestone powder and fly ash , 2012 .

[30]  E. F. Irassar,et al.  Strength development of ternary blended cement with limestone filler and blast-furnace slag , 2003 .

[31]  V. S. Ramachandran,et al.  The effect of thiocyanates on the hydration of portland cement at low temperatures , 1995 .

[32]  Paul Sandberg,et al.  On the mechanism of strength enhancement of cement paste and mortar with triisopropanolamine , 2004 .

[33]  R. A. Lauten,et al.  On the mechanisms of consumption of calcium lignosulfonate by cement paste , 2017 .

[34]  Marios Soutsos,et al.  Effect of temperature on the strength development of mortar mixes with GGBS and fly ash , 2017 .

[35]  Erick Ringot,et al.  Mineral admixtures in mortars Effect of inert materials on short-term hydration , 2003 .

[36]  J. Stark,et al.  Activation of Blast Furnace Slag by a New Method , 2009 .

[37]  Alireza Bahadori,et al.  Global strategies and potentials to curb CO2 emissions in cement industry , 2013 .

[38]  Frank Winnefeld,et al.  Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. , 2008, Journal of colloid and interface science.

[39]  Robert J. Flatt,et al.  Design and Function of Novel Superplasticizers for More Durable High Performance Concrete (Superplast Project) , 2008 .

[40]  J. Sharp,et al.  The microstructure and mechanical properties of blended cements hydrated at various temperatures , 2001 .