Fundamental measure theory for hard-sphere mixtures: a review

Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments.

[1]  A. Iserles Numerical recipes in C—the art of scientific computing , by W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Pp 735. £27·50. 1988. ISBN 0-521-35465-X (Cambridge University Press) , 1989, The Mathematical Gazette.

[2]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[3]  Andrew G. Salinger,et al.  Two- and Three-Dimensional Nonlocal Density Functional Theory for Inhomogeneous Fluids , 2000 .

[4]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .

[5]  Kahl,et al.  Analytic example of a free energy functional , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Xueyu Song,et al.  Fundamental measure density functional theory studies on the freezing of binary hard-sphere and Lennard-Jones mixtures. , 2008, The Journal of chemical physics.

[7]  Groh,et al.  Hard-sphere solids near close packing: testing theories for crystallization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Henderson,et al.  Wetting and drying transitions at a fluid-wall interface: Density-functional theory versus computer simulation. , 1989, Physical review. A, General physics.

[9]  Howard Reiss,et al.  Aspects of the Statistical Thermodynamics of Real Fluids , 1960 .

[10]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[11]  Roland Roth,et al.  A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres. , 2006, The Journal of chemical physics.

[12]  P. Tarazona,et al.  A density functional theory of melting , 1984 .

[13]  Rosenfeld Density functional theory of molecular fluids: Free-energy model for the inhomogeneous hard-body fluid. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[15]  Evans,et al.  Depletion potential in hard-sphere mixtures: theory and applications , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[17]  Marjolein Dijkstra,et al.  Phase behavior and structure of binary hard-sphere mixtures , 1998 .

[18]  James F Lutsko Properties of non-fcc hard-sphere solids predicted by density functional theory. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Robert Evans,et al.  Fundamentals of Inhomogeneous Fluids , 1992 .

[20]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[21]  J. M. Prausnitz,et al.  Theory of Simple Liquids : by Jean-Pierre Hansen and Ian R. McDonald, Academic Press (Harcourt, Brace, Jovanovich, Publishers), London, New York, San Francisco, 1976, 395 pages, £14 , 1979 .

[22]  José A. Cuesta,et al.  Density Functional Theories of Hard Particle Systems , 2008 .

[23]  Kierlik,et al.  Density-functional theory for inhomogeneous fluids: Adsorption of binary mixtures. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[24]  Cuesta Fluid mixtures of parallel hard cubes. , 1996, Physical review letters.

[25]  Hartmut Löwen,et al.  Dimensional crossover and the freezing transition in density functional theory , 1996 .

[26]  Hartmut Löwen,et al.  Fundamental-measure free-energy density functional for hard spheres: Dimensional crossover and freezing , 1997 .

[27]  Hartmut Löwen,et al.  Interfacial properties of model colloid–polymer mixtures , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Y. Rosenfeld,et al.  Free energy model for the inhomogeneous hard-body fluid: application of the Gauss-Bonnet theorem , 1995 .

[29]  Gerhard Kahl,et al.  Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version , 2002 .

[30]  Y. Rosenfeld,et al.  Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas , 1993 .

[31]  Luis Lafuente,et al.  Elusiveness of fluid-fluid demixing in additive hard-core mixtures. , 2002, Physical review letters.

[32]  Jerome Percus,et al.  Free energy models for nonuniform classical fluids , 1988 .

[33]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[34]  S. Dietrich,et al.  Depletion potentials near geometrically structured substrates , 2003 .

[35]  Taro Kihara,et al.  Convex Molecules in Gaseous and Crystalline States , 2007 .

[36]  J. R. Henderson,et al.  Statistical mechanics of fluid interfaces in cylindrical symmetry , 1984 .

[37]  Carlos Vega,et al.  Determination of the melting point of hard spheres from direct coexistence simulation methods. , 2008, The Journal of chemical physics.

[38]  David A. Young,et al.  Studies in molecular dynamics. XIII. Singlet and pair distribution functions for hard‐disk and hard‐sphere solids , 1974 .

[39]  Kierlik,et al.  Free-energy density functional for the inhomogeneous hard-sphere fluid: Application to interfacial adsorption. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  Phan,et al.  Equivalence of two free-energy models for the inhomogeneous hard-sphere fluid. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  A. Vrij,et al.  Polymers at Interfaces and the Interactions in Colloidal Dispersions , 1976 .

[42]  Y. Rosenfeld,et al.  Scaled field particle theory of the structure and the thermodynamics of isotropic hard particle fluids , 1988 .

[43]  Hartmut Löwen,et al.  Density functional theory for a model colloid-polymer mixture: bulk fluid phases , 2002 .

[44]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[45]  Jean-Pierre Hansen,et al.  Effects of size polydispersity on depletion interactions , 2001 .

[46]  H. T. Davis,et al.  The statistical mechanics of inhomogeneous hard rod mixtures , 1989 .

[47]  Matthias Schmidt Density functional for the Widom-Rowlinson model , 2000 .

[48]  P. Tarazona,et al.  A simple density functional theory for inhomogeneous liquids , 1984 .

[49]  M. Dijkstra,et al.  Phase diagram of highly asymmetric binary hard-sphere mixtures. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Fumio Oosawa,et al.  Surface Tension of High‐Polymer Solutions , 1954 .

[51]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .

[52]  Roland Roth,et al.  The depletion potential in non-additive hard-sphere mixtures , 2001 .

[53]  Nicolaas M. Faber,et al.  Hard sphere fluids near a hard wall and a hard cylinder , 1987 .

[54]  Tarazona Density functional for hard sphere crystals: A fundamental measure approach , 2000, Physical review letters.

[55]  Rosenfeld,et al.  Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. , 1989, Physical review letters.

[56]  William G. Hoover,et al.  Studies in Molecular Dynamics. V. High‐Density Equation of State and Entropy for Hard Disks and Spheres , 1968 .

[57]  Rosenfeld Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: Structure factors for the hard-disk (D=2) mixtures in simple explicit form. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[58]  Groh Density-functional theory for vacancies in hard-sphere crystals , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  Karl W. Kratky,et al.  Intersecting disks (and spheres) and statistical mechanics. I. Mathematical basis , 1981 .

[60]  S Melchionna,et al.  Accurate calculation of three-body depletion interactions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  J. A. White,et al.  Density functional theory of fluids in nanopores: analysis of the fundamental measures theory in extreme dimensional-crossover situations. , 2006, The Journal of chemical physics.

[62]  R Roth,et al.  Hard-sphere fluids in contact with curved substrates. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Jose A. Cuesta,et al.  Close to the edge of fundamental measure theory: a density functional for hard-sphere mixtures , 2002, cond-mat/0205256.

[64]  Roland Roth,et al.  Density functional theory for hard-sphere mixtures: the White Bear version mark II , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  Dietrich,et al.  Binary hard-sphere fluids near a hard wall , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[67]  Andrew G. Salinger,et al.  Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids: I. Algorithms and parallelization , 2000 .

[68]  Y. Rosenfeld,et al.  From zero-dimension cavities to free-energy functionals for hard disks and hard spheres , 1997 .

[69]  Evans,et al.  Density functional for a model colloid-polymer mixture , 2000, Physical review letters.

[70]  H. Löwen,et al.  Interfacial free energy of hard-sphere fluids and solids near a hard wall. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  P-M König,et al.  Morphological thermodynamics of fluids: shape dependence of free energies. , 2004, Physical review letters.

[72]  Jerome Percus,et al.  Equilibrium state of a classical fluid of hard rods in an external field , 1976 .

[73]  Hartmut Löwen,et al.  Density Distribution in a Hard-Sphere Crystal , 1993 .

[74]  R. Roth,et al.  General methods for free-volume theory. , 2005, The Journal of chemical physics.

[75]  P. Tarazona,et al.  Fundamental measure theory and dimensional interpolation for the hard spheres fluid , 2002 .

[76]  Matthias Schmidt An ab initio density functional for penetrable spheres , 1999 .

[77]  Roland Roth,et al.  Fluid mixtures at curved walls , 2005 .

[78]  Stefan Sokołowski,et al.  Hard sphere mixtures near a hard wall , 1998 .

[79]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[80]  J. R. Henderson,et al.  Statistical mechanics of fluids at spherical structureless walls , 1983 .

[81]  Frank van Swol,et al.  On the interface between a fluid and a planar wall , 1984 .

[82]  Hartmut Löwen,et al.  Entropic wetting and the fluid-fluid interface of a model colloid-polymer mixture , 2002 .

[83]  Jianzhong Wu,et al.  Structures of hard-sphere fluids from a modified fundamental-measure theory , 2002 .

[84]  Cates,et al.  Local size segregation in polydisperse hard sphere fluids , 1999, Physical review letters.

[85]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[86]  Klaus Mecke,et al.  Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. , 2009, Physical review letters.