The central parsecs of M87: jet emission and an elusive accretion disc

We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec ( ∼ 32 pc) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of < 6 × -5 M⊙ yr-1, assuming 10 per cent efficiency. This power suffices to explain M87 radiative luminosity at the jet frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.

[1]  S. Soldi,et al.  High-energy emission processes in M87 , 2015 .

[2]  A. Broderick,et al.  Inside the Bondi radius of M87 , 2015, 1504.07633.

[3]  S. Soldi,et al.  High-energy Emission Processes in M 87 , 2015, 1504.06517.

[4]  M. Rieke,et al.  THE EVENT HORIZON OF M87 , 2015, 1503.03873.

[5]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of active galactic nuclei: challenges to the torus , 2014, 1405.5653.

[6]  M. Prieto,et al.  The innermost globular clusters of M87 , 2014, 1405.2920.

[7]  M. Kino,et al.  A STRONG RADIO BRIGHTENING AT THE JET BASE OF M 87 DURING THE ELEVATED VERY HIGH ENERGY GAMMA-RAY STATE IN 2012 , 2014, 1405.1082.

[8]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[9]  L. Sironi,et al.  RELATIVISTIC RECONNECTION: AN EFFICIENT SOURCE OF NON-THERMAL PARTICLES , 2014, 1401.5471.

[10]  M. Eracleous,et al.  Spectral Models for Low-luminosity Active Galactic Nuclei in LINERs: The Role of Advection-dominated Accretion and Jets , 2013, 1312.1982.

[11]  Masanori Nakamura,et al.  DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS , 2013, 1311.5709.

[12]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[13]  Durham,et al.  Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies , 2012, 1211.5604.

[14]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[15]  J. Ostriker,et al.  ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE , 2012, 1206.4059.

[16]  J. A. Fern'andez-Ontiveros,et al.  The SED of Low-Luminosity AGNs at high-spatial resolution , 2012, 1206.0777.

[17]  S. Anderson,et al.  THE LACK OF TORUS EMISSION FROM BL LACERTAE OBJECTS: AN INFRARED VIEW OF UNIFICATION WITH WISE , 2011, 1112.5162.

[18]  S. Kaufmann,et al.  THE 2010 VERY HIGH ENERGY γ-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87 , 2011, 1111.5341.

[19]  R. Mukherjee,et al.  AN EXPERIMENT TO LOCATE THE SITE OF TeV FLARING IN M87 , 2011, 1111.5343.

[20]  William B. Sparks,et al.  OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET , 2011, 1109.6252.

[21]  D. Harris,et al.  Complex particle acceleration processes in the hotspots of 3C 105 and 3C 445 , 2011, 1109.4895.

[22]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[23]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[24]  Jon M. Miller,et al.  A JET MODEL FOR THE BROADBAND SPECTRUM OF THE SEYFERT 1 GALAXY NGC 4051 , 2011, 1104.5006.

[25]  L. Ho,et al.  ON THE ORIGIN OF ULTRAVIOLET EMISSION AND THE ACCRETION MODEL OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI , 2010, 1011.1962.

[26]  M. Eracleous,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF WEAK ACTIVE GALACTIC NUCLEI ASSOCIATED WITH LOW-IONIZATION NUCLEAR EMISSION REGIONS , 2010, 1001.2924.

[27]  N. Neumayer,et al.  The spectral energy distribution of the central parsecs of the nearest AGN , 2009, 0910.3771.

[28]  S. Markoff From Multiwavelength to Mass Scaling: Accretion and Ejection in Microquasars and AGN , 2009, 0909.2574.

[29]  A. R. Bazer-Bachi,et al.  Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy , 2009, Science.

[30]  L. Ho,et al.  ON THE DISAPPEARANCE OF THE BROAD-LINE REGION IN LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI , 2009, 0907.3752.

[31]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[32]  Astronomy,et al.  An X-ray view of 82 LINERs with Chandra and XMM-Newton data , 2009, 0905.2973.

[33]  J. A. Biretta,et al.  VARIABILITY TIMESCALES IN THE M87 JET: SIGNATURES OF E2 LOSSES, DISCOVERY OF A QUASI PERIOD IN HST-1, AND THE SITE OF TeV FLARING , 2009, 0904.3925.

[34]  M. Noble,et al.  Constraining jet/disc geometry and radiative processes in stellar black holes XTE J1118+480 and GX 339−4 , 2009, 0904.2128.

[35]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[36]  M. Prieto,et al.  Near-infrared/optical counterparts of hotspots in radio galaxies , 2008, 0810.3764.

[37]  D. Maoz The properties of LLAGN inferred from high resolution observations , 2008 .

[38]  P. Chandra,et al.  Results from an Extensive Simultaneous Broadband Campaign on the Underluminous Active Nucleus M81*: Further Evidence for Mass-scaling Accretion in Black Holes , 2008, 0804.0344.

[39]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[40]  Juan P. Madrid,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF AN EXTRAORDINARY FLARE IN THE M87 JET , 2007, 0904.3546.

[41]  D. Maoz Low-luminosity active galactic nuclei : are they UV faint and radio loud? , 2007, astro-ph/0702292.

[42]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[43]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[44]  S. Allen,et al.  The relation between accretion rate and jet power in X-ray luminous elliptical galaxies , 2006, astro-ph/0602549.

[45]  F. Aharonian,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006, astro-ph/0602220.

[46]  W. Sparks,et al.  The Outburst of HST-1 in the M87 Jet , 2005, astro-ph/0511755.

[47]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[48]  J. Tonry,et al.  The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation , 2005, astro-ph/0508219.

[49]  R. Narayan,et al.  An Accretion-Jet Model for Black Hole Binaries: Interpreting the Spectral and Timing Features of XTE J1118+480 , 2004, astro-ph/0407612.

[50]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[51]  R. Antonucci,et al.  Thermal Emission as a Test for Hidden Nuclei in Nearby Radio Galaxies , 2002, astro-ph/0207385.

[52]  R. Kraft,et al.  Reflections of Active Galactic Nucleus Outbursts in the Gaseous Atmosphere of M87 , 2003, astro-ph/0312576.

[53]  P. Jonker,et al.  Jet-dominated states: an alternative to advection across black hole event horizons in ‘quiescent’ X-ray binaries , 2003, astro-ph/0306614.

[54]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[55]  B. Mobasher,et al.  Absolute Flux Calibration of STIS MAMA Imaging Modes , 2003 .

[56]  M. Allen,et al.  The Nuclei of Radio Galaxies in the Ultraviolet: The Signature of Different Emission Processes , 2002, astro-ph/0202035.

[57]  P. Martini,et al.  Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling , 2002, astro-ph/0201185.

[58]  R. Sunyaev,et al.  Cooling flows as a calorimeter of active galactic nucleus mechanical power , 2002 .

[59]  William B. Sparks,et al.  Deep 10 Micron Imaging of M87 , 2001 .

[60]  H. Falcke,et al.  Evidence for Jet Domination of the Nuclear Radio Emission in Low-Luminosity Active Galactic Nuclei , 2001, astro-ph/0109493.

[61]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[62]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[63]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[64]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[65]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[66]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[67]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[68]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[69]  Luis C. Ho,et al.  The Spectral Energy Distributions of Low-Luminosity Active Galactic Nuclei , 1998, astro-ph/9905012.

[70]  A. Comastri,et al.  A theoretical unifying scheme for gamma-ray bright blazars , 1998, astro-ph/9807317.

[71]  S. Doeleman,et al.  A 3 Millimeter VLBI Continuum Source Survey , 1998 .

[72]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[73]  M. Prieto,et al.  Detection of Extended Optical Emission Associated with the Northern Radio Hot Spot of 3C 390.3 , 1997 .

[74]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[75]  L. Ho,et al.  A Search for “Dwarf” Seyfert Nuclei. IV. Nuclei with Broad Hα Emission , 1997, astro-ph/9704099.

[76]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996, astro-ph/9610097.

[77]  Geoffrey V. Bicknell,et al.  Understanding the Kiloparsec-Scale Structure of M87 , 1996 .

[78]  Stefano Casertano,et al.  THE PHOTOMETRIC PERFORMANCE AND CALIBRATION OF WFPC2 , 1995 .

[79]  M. Rees,et al.  The Accretion luminosity of a massive black hole in an elliptical galaxy , 1995, astro-ph/9509096.

[80]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[81]  W. Junor,et al.  The radio jet in 3C274 at 0.01 PC resolution , 1995 .

[82]  H. Ford,et al.  Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[83]  H. Ford,et al.  HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[84]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[85]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[86]  W. Cotton,et al.  VLBI Observations of a Complete Sample of Radio Galaxies. VII. Study of the FR I Sources 3C 31, 4C 35.03, and 3C 264 , 1990, astro-ph/0101096.

[87]  A. Heavens,et al.  Relativistic shocks and particle acceleration , 1988 .

[88]  R. Preston,et al.  Evidence for a radio flare in the nucleus of Virgo A , 1988 .

[89]  Supriya Chakrabarti,et al.  Astronomical data analysis from remote sites , 1988 .

[90]  A. Niell,et al.  VLBI observations of 416 extragalactic radio sources , 1986 .

[91]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[92]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .