Integrated likelihood methods for eliminating nuisance parameters

Elimination of nuisance parameters is a central problem in statistical inference and has been formally studied in virtually all approaches to inference. Perhaps the least studied approach is elimination of nuisance parameters through integration, in the sense that this is viewed as an almost incidental byproduct of Bayesian analysis and is hence not something which is deemed to require separate study. There is, however, considerable value in considering integrated likelihood on its own, especially versions arising from default or noninformative priors. In this paper, we review such common integrated likelihoods and discuss their strengths and weaknesses relative to other methods.

[1]  Dongchu Sun,et al.  Reference priors with partial information , 1998 .

[2]  Elías Moreno,et al.  Estimating with incomplete count data A Bayesian approach , 1998 .

[3]  J. F. Bjørnstad On the Generalization of the Likelihood Function and the Likelihood Principle , 1996 .

[4]  J. Berger,et al.  Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .

[5]  Jayanta K. Ghosh,et al.  Noninformative priors for maximal invariant parameter in group models , 1995 .

[6]  Nancy Reid,et al.  The Roles of Conditioning in Inference , 1995 .

[7]  Trevor J. Sweeting,et al.  A framework for Bayesian and likelihood approximations in statistics , 1995 .

[8]  T. Sweeting A Bayesian approach to approximate conditional inference , 1995 .

[9]  Jayanta K. Ghosh,et al.  On priors providing frequentist validity for Bayesian inference , 1995 .

[10]  Dongchu Sun Integrable Expansions for Posterior Distributions for a Two-Parameter Exponential Family , 1994 .

[11]  Brunero Liseo,et al.  Elimination of nuisance parameters with reference priors , 1993 .

[12]  B. Efron Bayes and likelihood calculations from confidence intervals , 1993 .

[13]  Ted Chang,et al.  REFERENCE PRIORS FOR THE ORBIT IN A GROUP MODEL , 1990 .

[14]  Ian R. Harris Predictive fit for natural exponential families , 1989 .

[15]  Nancy Reid,et al.  Adjustments to profile likelihood , 1989 .

[16]  J. K. Ghosh,et al.  Statistical information and likelihood : a collection of critical essays , 1989 .

[17]  David R. Cox,et al.  A time series illustration of approximate conditional likelihood , 1989 .

[18]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[19]  Adrian E. Raftery,et al.  Inference for the binomial N parameter: A hierarchical Bayes approach , 1988 .

[20]  James O. Berger,et al.  Statistical Analysis and the Illusion of Objectivity , 1988 .

[21]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[22]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[23]  William D. Kahn,et al.  A Cautionary Note for Bayesian Estimation of the Binomial Parameter n , 1987 .

[24]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[25]  Raymond J. Carroll,et al.  A Note on N Estimators for the Binomial Distribution , 1985 .

[26]  I. Good Good Thinking: The Foundations of Probability and Its Applications , 1983 .

[27]  J. Berger,et al.  Empirical Bayes Estimation of Rates in Longitudinal Studies , 1983 .

[28]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[29]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[30]  I. Olkin,et al.  A Comparison of n Estimators for the Binomial Distribution , 1981 .

[31]  Debabrata Basu,et al.  On the Elimination of Nuisance Parameters , 1977 .

[32]  Irwin Guttman,et al.  Bayesian Estimation of the Binomial Parameter , 1971 .

[33]  John D. Kalbfleisch,et al.  Application of Likelihood Methods to Models Involving Large Numbers of Parameters , 1970 .

[34]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[35]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .

[36]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .

[37]  H. Jeffreys The Theory of Probability , 1896 .

[38]  James O. Berger,et al.  ESTIMATION OF QUADRATIC FUNCTIONS: NONINFORMATIVE PRIORS FOR NON-CENTRALITY PARAMETERS , 1998 .

[39]  Trevor J. Sweeting,et al.  Approximate Bayesian computation based on signed roots of log-density ratios (with discussion) , 1996 .

[40]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[41]  Robert Tibshirani,et al.  A Simple Method for the Adjustment of Profile Likelihoods , 1990 .

[42]  Murray Aitkin,et al.  Likelihood Analysis of a Binomial Sample Size Problem , 1989 .

[43]  S. Zabell R. A. Fisher on the history of inverse probability , 1989 .

[44]  O. Barndorff-Nielsen Parametric statistical models and likelihood , 1988 .

[45]  Joseph B. Kadane,et al.  What is the Likelihood Function , 1988 .

[46]  M. Stone,et al.  Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .

[47]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[48]  R. Fisher 014: On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. , 1921 .