Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.

[1]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[2]  K. Brown,et al.  What's in a name? That which we call IPF, by any other name would act the same , 2018, European Respiratory Journal.

[3]  David J. Lederer,et al.  Barriers to timely diagnosis of interstitial lung disease in the real world: the INTENSITY survey , 2018, BMC Pulmonary Medicine.

[4]  Raúl San José Estépar,et al.  Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography , 2018, American journal of respiratory and critical care medicine.

[5]  D. Lynch,et al.  Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. , 2017, The Lancet. Respiratory medicine.

[6]  H. Collard,et al.  Design of the PF-ILD trial: a double-blind, randomised, placebo-controlled phase III trial of nintedanib in patients with progressive fibrosing interstitial lung disease , 2017, BMJ Open Respiratory Research.

[7]  F. Martinez,et al.  Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis: an international case–cohort study , 2017, European Respiratory Journal.

[8]  Edwin J R van Beek,et al.  Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up. , 2017, Radiology.

[9]  D. Lynch,et al.  Idiopathic Pulmonary Fibrosis: The Association between the Adaptive Multiple Features Method and Fibrosis Outcomes , 2017, American journal of respiratory and critical care medicine.

[10]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[11]  H. Collard,et al.  The use of pretest probability increases the value of high-resolution CT in diagnosing usual interstitial pneumonia , 2017, Thorax.

[12]  D. Hansell,et al.  Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures , 2017, European Respiratory Journal.

[13]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[14]  Usual interstitial pneumonia pattern in chronic hypersensitivity pneumonitis , 2016 .

[15]  F. Martinez,et al.  Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling. , 2016, Respiratory medicine.

[16]  A. Nicholson,et al.  Multicentre evaluation of multidisciplinary team meeting agreement on diagnosis in diffuse parenchymal lung disease: a case-cohort study. , 2016, The Lancet. Respiratory medicine.

[17]  J. Gruden CT in Idiopathic Pulmonary Fibrosis: Diagnosis and Beyond. , 2016, AJR. American journal of roentgenology.

[18]  M. Broder,et al.  Clinical and economic burden of idiopathic pulmonary fibrosis: a retrospective cohort study , 2016, BMC Pulmonary Medicine.

[19]  Y. Sugiyama,et al.  Diagnostic certainty of idiopathic pulmonary fibrosis/usual interstitial pneumonia: The effect of the integrated clinico-radiological assessment. , 2015, European journal of radiology.

[20]  D. Hansell,et al.  Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT , 2015, Thorax.

[21]  Jonathan H. Chung,et al.  CT scan findings of probable usual interstitial pneumonitis have a high predictive value for histologic usual interstitial pneumonitis. , 2015, Chest.

[22]  J. Goldin,et al.  Comparison of the quantitative CT imaging biomarkers of idiopathic pulmonary fibrosis at baseline and early change with an interval of 7 months. , 2015, Academic radiology.

[23]  Shandra L. Protzko,et al.  An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. , 2013, American journal of respiratory and critical care medicine.

[24]  A. Wells The revised ATS/ERS/JRS/ALAT diagnostic criteria for idiopathic pulmonary fibrosis (IPF) - practical implications , 2013, Respiratory Research.

[25]  T. Hartman,et al.  Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis , 2013, European Respiratory Journal.

[26]  D. Lynch,et al.  Interobserver variability in the CT assessment of honeycombing in the lungs. , 2013, Radiology.

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  E. Bagiella,et al.  Delayed access and survival in idiopathic pulmonary fibrosis: a cohort study. , 2011, American journal of respiratory and critical care medicine.

[29]  Takeshi Johkoh,et al.  American Thoracic Society Documents An Official ATS / ERS / JRS / ALAT Statement : Idiopathic Pulmonary Fibrosis : Evidence-based Guidelines for Diagnosis and Management , 2011 .

[30]  M S Brown,et al.  A computer-aided diagnosis system for quantitative scoring of extent of lung fibrosis in scleroderma patients. , 2010, Clinical and experimental rheumatology.

[31]  T. E. King,et al.  Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease , 2009, European Respiratory Journal.

[32]  Susan Murray,et al.  Idiopathic interstitial pneumonia: do community and academic physicians agree on diagnosis? , 2007, American journal of respiratory and critical care medicine.

[33]  A. Nicholson,et al.  HRCT diagnosis of diffuse parenchymal lung disease: inter-observer variation , 2004, Thorax.

[34]  F. Martinez,et al.  Radiological versus histological diagnosis in UIP and NSIP: survival implications , 2003, Thorax.

[35]  David E Bruns,et al.  The STARD initiative and the reporting of studies of diagnostic accuracy. , 2003, Clinical chemistry.